Name: __

PanthID: _____

Quiz 2-A MAD 2104 Summer A 2015

1. (6 pts) For each of the following, circle the correct answer. Only one answer is correct. No proof or justification necessary, but a Venn diagram may help you.

(a) For any sets S, T, if $S \subseteq T$ then:

 $(i) \ \ \overline{T} \subseteq \overline{S} \qquad (ii) \ \ T \subseteq S \cap T \qquad (iii) \ \ T - S = \emptyset \qquad (iv) \ \ S \cap T = S \cup T$

(b) According to DeMorgan's laws $\overline{A \cup (B \cap C)} =$

 $(i) \ \overline{A} \cup (\overline{B} \cap \overline{C}) \qquad (ii) \ \overline{A} \cap (B \cap C) \qquad (iii) \ \overline{A} \cap (\overline{B} \cup \overline{C}) \qquad (iv) \ A \cap (B \cup C)$

(c) Which of the following is true for all sets A and B?

 $(i) \ A \cup \overline{B} = \overline{A \cap B}$

(ii) $A \cup \overline{B} = (A \cap B) \cup B$ (iii) $(A \cup B) \cap B = B$ (iv) A - (A - B) = B

2. (7 pts) The symmetric difference of two sets A, B is denoted by $A \oplus B$ and is defined sometimes by $(A-B)\cup(B-A)$ and sometimes by $(A\cup B)-(A\cap B)$.

(a) (6 pts) Show that for any sets A and B, $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$.

(b) (1 pts) To what logical connector does the set operation $A \oplus B$ correspond to?

- **3.** (8 pts) For each of the following, circle **all** the true statements. More than one, or none, of the answers could be true. No proof or justification necessary.
- (a) Let $A = \{1, 2, 3, 4\}$ and let $\mathcal{P}(A)$ be the power set of A. From the statements below, circle the ones which are true:
 - (i) $2 \in \mathcal{P}(A)$ (ii) $\{1,3\} \subseteq \mathcal{P}(A)$ (iii) $\{1,3\} \in \mathcal{P}(A)$ (iv) $\{\{2\},\{4\}\} \subseteq \mathcal{P}(A)$
- (b) On the set of all people, let \mathcal{R} be the relation given by $(a,b) \in \mathcal{R}$ if and only if a and b have the same birthday (day and month). From the statements below, circle the ones which are true:
- (i) \mathcal{R} is reflexive (ii) \mathcal{R} is symmetric (iii) \mathcal{R} is anti-symmetric (iv) \mathcal{R} is transitive
- **4.** (6 pts) If possible, give an example of a relation \mathcal{R} on the set $A = \{a, b, c\}$ which is reflexive, anti-symmetric, but not symmetric and not transitive. If not possible, explain why.