Name: \qquad
Quiz 2-B MAD 2104
PanthID: \qquad
Summer A 2015

1. (6 pts) For each of the following, circle the correct answer. Only one answer is correct. No proof or justification necessary, but a Venn diagram may help you.
(a) For any sets S, T, if $S \subseteq T$ then:
(i) $\bar{S} \subseteq \bar{T}$
(ii) $S \cap T=\emptyset$
(iii) $S-T=\emptyset$
(iv) $S \cap T=S \cup T$
(b) According to DeMorgan's laws $\overline{A \cap(B \cup C)}=$
(i) $\bar{A} \cap(\bar{B} \cup \bar{C})$
(ii) $\bar{A} \cup(\bar{B} \cap \bar{C})$
(iii) $\bar{A} \cup(B \cup C)$
(iv) $A \cup(B \cap C)$
(c) Which of the following is true for all sets A and B ?
(i) $A \cap \bar{B}=\overline{A \cap B}$
(ii) $A \cap \bar{B}=A-(A \cap B)$
(iii) $(A \cup B)-B=A$
(iv) $A \cup B=A \cap B$
2. (7 pts) The symmetric difference of two sets A, B is denoted by $A \oplus B$ and is defined sometimes by $(A-B) \cup(B-A)$ and sometimes by $(A \cup B)-(A \cap B)$.
(a) $(6 \mathrm{pts})$ Show that for any sets A and $B,(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$.
(b) (1 pts) To what logical connector does the set operation $A \oplus B$ correspond to?
3. (8 pts) For each of the following, circle all the true statements. More than one, or none, of the answers could be true. No proof or justification necessary.
(a) Let $A=\{1,2,3,4\}$ and let $\mathcal{P}(A)$ be the power set of A. From the statements below, circle the ones which are true:
(i) $\{2,4\} \in \mathcal{P}(A)$
(ii) $\{\{2\},\{4\}\} \subseteq \mathcal{P}(A)$
(iii) $\{1,3\} \subseteq \mathcal{P}(A)$
(iv) $1 \in \mathcal{P}(A)$
(b) On the set of all people, let \mathcal{R} be the relation given by $(a, b) \in \mathcal{R}$ if and only if a and b have the same birthday (day and month). From the statements below, circle the ones which are true:
(i) \mathcal{R} is reflexive
(ii) \mathcal{R} is symmetric
(iii) \mathcal{R} is anti-symmetric
(iv) \mathcal{R} is transitive
4. (6 pts) If possible, give an example of a relation \mathcal{R} on the set $A=\{a, b, c\}$ which is symmetric, transitive, but not reflexive and not anti-symmetric. If not possible, explain why.
