Quiz 3 - Take home - Due Wednesday, June 3, 2015 \qquad

To receive credit you MUST SHOW ALL YOUR WORK.

1. (10 pts) (a) Assuming the pattern continues, find the next two terms of the sequence and give a formula for the general term a_{n}.

$$
a_{0}=5, a_{1}=9, a_{2}=13, a_{3}=17, a_{4}=21, a_{5}=
$$

\qquad $a_{6}=$ \qquad $, \ldots, a_{n}=$ \qquad
(b) Assuming the pattern continues, find the next two terms of the sequence and give a formula for the general term a_{n}.

$$
a_{1}=\frac{1}{2}, a_{2}=\frac{1}{6}, a_{3}=\frac{1}{12}, a_{4}=\frac{1}{20}, a_{5}=_, a_{6}=\ldots, a_{n}=
$$

\qquad
2. (15 pts) (a) Let \mathcal{S}_{n} denote the set of all bit strings of length n. List all the elements in \mathcal{S}_{3}. What is $\left|S_{3}\right|=$? What is $\left|\mathcal{S}_{n}\right|=$?
(b) Let \mathcal{S}^{f} denote the set of all bit strings of finite length. Show that \mathcal{S}^{f} is infinitely countable. (Hint: What's the relation between \mathcal{S}^{f} and the \mathcal{S}_{n} 's?)
(c) Now let \mathcal{S} denote the set all bit strings of infinite length. Show that \mathcal{S} is not countable. (Hint: Use contradiction and Cantor diagonal argument.)

