Name:		PanthID:	
Quiz 4 – take home	MAD 2104	Summer A 2015	

Due Monday, June 8. For full credit, you must show all your work.

1. (6 pts) This is a counting problem related to the one you did in class today. In each case, it is easier to first count the complement set. There are 26 English letters, with 5 vowels and 21 consonants. It's OK if you just give the answers for this problem, but it may be helpful to you to write in words what the complement set is.

(i) How many strings of eight uppercase English letter are there that contain at least one vowel, if letters can be repeated?

(ii) How many strings of eight uppercase English letter are there that contain at least one vowel, if letters cannot be repeated.

2. (10 pts) Consider the matrix

$$A = \begin{pmatrix} 1 & 1 \\ 0 & d \end{pmatrix}, \text{ where } d \text{ is a given constant.}$$

(a) Compute A^2 , A^3 , A^4 , and then guess a formula for A^n .

(b) Use mathematical induction to prove your formula for A^n .

3. (10 pts) Use strong induction to show that every positive integer n can be written as a sum of **distinct** powers of 2, that is, as a sum of a subset of the integers $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, and so on. For example, for n = 23, $2^3 = 2^4 + 2^2 + 2^1 + 2^0$.

Hint: One way to establish the inductive step is the following: Assuming the statement is true for all integers up to n, to get it for n + 1 argue as follows: n + 1 must fall between two successive powers of 2 (why?). That is, there exists k integer, such that $2^k \leq n + 1 < 2^{k+1}$. Then consider $n + 1 - 2^k$ and apply the inductive assumption.