\qquad

Worksheet 06/01

MAD 2104

1. Given the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) \quad \text { compute each of the following: }
$$

(a) $A^{2}=A \cdot A=$
(b) $A^{3}=A^{2} \cdot A=$
(c) $A^{4}=A^{3} \cdot A=$
(d) Guess what $A^{n}=$

Note for Pb. 2: The transpose A^{T} of a matrix A is the matrix such that the rows of A^{T} are the columns of A. If A is a 5 by 2 matrix (that is, a matrix with 5 rows and 2 columns), then obviously A^{T} is a 2 by 5 matrix.
2. Given the 3 by 2 matrices

$$
A=\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 1
\end{array}\right)
$$

(a) Compute each of the following:
A^{T}
B^{T}
$A^{T} B$
$B^{T} A$
(b) Without actually computing, decide in each case if the following computation is possible. If yes, mention the type of the resulting matrix (e.g. 3 by 2 , or 2 by 2 , etc.)

$$
A+3 B \quad A^{T}+B \quad A B \quad B^{2} \quad B B^{T}
$$

