Quiz 5 - take home MAD 2104
Summer A 2011

## Due Monday, June 13. For full credit, you must show all your work.

1. (10 pts) Consider the matrix

$$
A=\left(\begin{array}{ll}
1 & c \\
0 & d
\end{array}\right), \quad \text { where } c \text { and } d \text { are given constants. }
$$

Find a formula for $A^{n}$, where $n$ is a positive integer, and then use induction to prove your formula.
2. (10 pts) Use strong induction to show that every positive integer $n$ can be written as a sum of distinct powers of 2 , that is, as a sum of a subset of the integers $2^{0}=1,2^{1}=2,2^{2}=4$, and so on. For example, for $n=23,23=2^{4}+2^{2}+2^{1}+2^{0}$.

Note and Hint: This is the binary expression of a given number $n$. One way to establish the inductive step is the following: given $n+1$, it must fall between two successive powers of 2 (why?). That is, $2^{k} \leq n+1<2^{k+1}$ for some $k$. Then consider $n+1-2^{k}$ and apply the inductive assumption.

