\qquad
Quiz 6 - take home MAD 2104
Summer A 2011

Due Monday, June 20. For full credit, you must show all your work.

1. (10 pts) Suppose you write the list of all three digits numbers: $100,101,103, \ldots, 998,999$.
(a) How many different numbers on your list contain the digit 0 ?
(b) How many times the digit 0 was used in writing the list above?
2. (12 pts) Let $p(n)$ denote the number of different partitions of a set A with n elements. (By the Theorem 2 in section $8.5, p(n)$ is also the number of different equivalence relations on a set with n elements.) As an example, note that $p(2)=2$; indeed, if $A=\left\{a_{1}, a_{2}\right\}$, the only possible partitions of the set A are $\left\{a_{1}, a_{2}\right\}$ and $\left\{a_{1}\right\} \bigcup\left\{a_{2}\right\}$.
(a) (8 pts) Show that $p(n)$ satisfies the recursive relation

$$
p(n)=\sum_{j=0}^{n-1} C(n-1, j) p(n-j-1), \text { for } n \geq 1, \text { and } p(0)=1
$$

(b) (4 pts) Use the recursive relation of part (a) to determine the number of different equivalence relations on a set with 8 elements.

