Exam 2 - MAS 3105 Spring06 NAME: Answer Key

To receive credit you MUST SHOW ALL YOUR WORK.

1. $(15 \mathrm{pts})$ Define each of the following (for (c), suppose S a subspace of $\left.\mathbf{R}^{n}\right)$:
(a) similar matrices
(b) linear transformation (between two vector spaces)
(c) S^{\perp}

See class notes or textbook.
2. (25 pts) Answer True or False. Briefly (but correctly) justify your answer (5 pts each).
(a) If A similar to B then A^{2} is similar to B^{2}.

True. $A \sim B$ implies $B=S^{-1} A S$, for some non-singular matrix S. Then $B^{2}=S^{-1} A S S^{-1} A S=S^{-1} A I A S=$ $S^{-1} A^{2} S$, thus $A^{2} \sim B^{2}$.
(b) For any matrix $A \in \mathcal{M}_{m n}, N(A) \oplus \operatorname{Range}\left(A^{T}\right)=\mathbf{R}^{n}$.

True. From Thm 5.2.1. we know $N(A)=\operatorname{Range}\left(A^{T}\right)^{\perp}$, but then we also know that $\mathbf{R}^{n}=S \oplus S^{\perp}$ for any subspace S. We can just take $S=\operatorname{Range}\left(A^{T}\right)$.
(c) $\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}\|+\|\mathbf{v}\|$, for any two vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{2}$.

False. It is very easy to find counter-examples, as the equality holds only when the vectors are collinear. Otherwise $\|\mathbf{u}+\mathbf{v}\|<\|\mathbf{u}\|+\|\mathbf{v}\|$ from the triangle inequality (sum of the lengths of two sides of a triangle is strictly larger then the third).
(d) For any matrix A, the rank of A is equal to the number of columns of A.

False. Rank of A is equal to the number of independent columns of A.
(e) If $\mathbf{x}_{1} \perp \mathbf{x}_{2}$ and $\mathbf{x}_{2} \perp \mathbf{x}_{3}$, then $\mathbf{x}_{1} \perp \mathbf{x}_{3}$, for any $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in \mathbf{R}^{3}$.

False. For instance, let $\mathbf{x}_{1}=\mathbf{e}_{1}, \mathbf{x}_{2}=\mathbf{e}_{2}, \mathbf{x}_{3}=\mathbf{e}_{3}+\mathbf{e}_{1}$ (many other examples are possible).
3. (15 pts) The following two matrices are row equivalent

$$
A=\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
1 & 2 & 1 & 4 \\
2 & 4 & 1 & 5
\end{array}\right) \quad \text { and } U=\left(\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(a) (3 pts) Find a basis for the row space of A.

The first two rows of A are a basis for $\operatorname{Row}(A)$. Equally good answer is to say that the first two rows of U are a basis, since $\operatorname{Row}(A)=\operatorname{Row}(U)$.
(b) (3 pts) Find a basis for the column space of A.

First and third column of A are a basis for $\operatorname{Col}(A)$ since the first and third column of U contain pivots. It would be wrong to say that the first and third column of U are a basis for $\operatorname{Col}(A)$, since $\operatorname{Col}(A)$ and $\operatorname{Col}(U)$ may be completely different.
(c) (3 pts) Find a basis for the null space of A.

The system $A \mathbf{x}=\mathbf{0}$ is equivalent to $U \mathbf{x}=\mathbf{0}$. Solving this (free variables are x_{2} and x_{4}), we get $x_{1}=-2 s-t, x_{2}=$ $s, x_{3}=-3 t, x_{4}=t$. Hence, a basis for $N(A)$ is $\left\{(-2,1,0,0)^{T},(-1,0,-3,1)^{T}\right\}$.
(d) (3 pts) Find the rank of A.
$\operatorname{Rank}(\mathrm{A})=\operatorname{dim}(\operatorname{Row}(\mathrm{A}))=\operatorname{dim}(\operatorname{Col}(\mathrm{A}))=2$.
(e) (3 pts) Find the nullity of A.
$\operatorname{null}(\mathrm{A})=\operatorname{dim}(\mathrm{N}(\mathrm{A}))=2($ or $\operatorname{null}(\mathrm{A})=\mathrm{n}-\operatorname{rank}(\mathrm{A})=4-2=2)$.
4. (10 pts) Let L be the operator on P_{3} defined by $L(p(x))=x p^{\prime}(x)+p(1)$. Find the matrix A representing L with respect to $\left[1, x, x^{2}\right]$.
$L(1)=1=1+0 \cdot x+0 \cdot x^{2}$
$L(x)=x+1=1+1 \cdot x+0 \cdot x^{2}$
$L\left(x^{2}\right)=2 x^{2}+1=1+0 \cdot x+2 \cdot x^{2}$
Thus the matrix of L with respect to the basis $\left[1, x, x^{2}\right]$ is

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

5. $(15 \mathrm{pts})$ Let $\mathbf{u}_{1}=(1,2)^{T}, \mathbf{u}_{2}=(2,5)^{T}$.
(a) (5 pts) Find the angle between \mathbf{u}_{1} and \mathbf{u}_{2}.

From $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=\left\|\mathbf{u}_{1}\right\|\left\|\mathbf{u}_{2}\right\| \cos \theta$, we get $\theta=\arccos (12 / \sqrt{5 \cdot 29})$.
(a) (5 pts) Find the transition matrix corresponding to the change of basis from $\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]$ to $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$.

It's U^{-1}, where U is the matrix with columns \mathbf{u}_{1} and \mathbf{u}_{2}. Computing we get

$$
U^{-1}=\left(\begin{array}{rr}
5 & -2 \\
-2 & 1
\end{array}\right)
$$

(b) (5 pts) Find the coordinates of $\mathbf{v}=(-1,1)^{T}$ with respect to $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$.
$U^{-1} \mathbf{v}=(-7,3)^{T}$.
6. (15 pts) Choose ONE of these to prove:
(a) If S is a subspace of \mathbf{R}^{m}, then $\left(S^{\perp}\right)^{\perp}=S$.

See textbook or class notes.
(b) Let S be a subspace of \mathbf{R}^{m}. For each $\mathbf{b} \in \mathbf{R}^{m}$, there is a unique element $\mathbf{p} \in S$ that is closest to \mathbf{b}, that is,

$$
\|\mathbf{b}-\mathbf{y}\|>\|\mathbf{b}-\mathbf{p}\| \quad \text { for any } \mathbf{y} \neq \mathbf{p} \text { in } S
$$

Furthermore, the vector \mathbf{p} in S that is closest to $\mathbf{b} \in \mathbf{R}^{m}$ has the property $\mathbf{b}-\mathbf{p} \in S^{\perp}$.
See textbook or class notes.
7. (15 pts) Choose ONE of these to prove:
(a) If A is an $m \times n$ matrix, then

$$
(A \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot\left(A^{T} \mathbf{v}\right), \text { for any vectors } \mathbf{u} \in \mathbf{R}^{n} \text { and } \mathbf{v} \in \mathbf{R}^{m}
$$

Proof: $\quad(A \mathbf{u}) \cdot \mathbf{v}=(A \mathbf{u})^{T} \mathbf{v}=\mathbf{u}^{T} A^{T} \mathbf{v}=\mathbf{u} \cdot\left(A^{T} \mathbf{v}\right)$
You may also say a few words to justify that all the matrix multiplications make sense (dimensions match).
(b) If A is an $m \times n$ matrix then $N\left(A^{T} A\right)=N(A)$.

See class notes. This is part of Ex. 13, section 5.2, which we solved in class.

