Take home Quiz 5-Linear Algebra Summer 2010 NAME:

Due Thursday, June 17. To receive credit you MUST SHOW ALL YOUR WORK.

1. (15 pts) This is a continuation of Problem 27, page 273 textbook that we did in class.

Consider the vector space $C[-1,1]$ with the L^{2}-inner product

$$
<f, g>=\int_{-1}^{1} f(x) g(x) d x
$$

(a) Find an orthonormal basis for the subspace $S=\operatorname{Span}\left(1, x, x^{2}\right)$. (Look at Thm. 5.6.1 if you did not follow the hints given in class.)
(b) Find the best least squares approximation to $x^{1 / 3}$ on $[-1,1]$ by a quadratic function $q(x)=c_{0}+c_{1} x+c_{2} x^{2}$.
2. (10 pts) Pb. 14 page 244 textbook. Look at Application 3 on pages 242-243. Feel free to use MATLAB to solve the normal equation

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b} \text { that you get in this case. }
$$

