Quiz 3-MAS 3105-Summer A 2011
NAME:

Due Tuesday, May 31. To receive credit you MUST SHOW ALL YOUR WORK.

1. (12 pts) In P_{4}, the set of polynomials of degree less than 4 , consider the subset S of polynomials $p(x)$ that satisfy $p(1)=0$ and $p^{\prime}(1)=0\left(p^{\prime}\right.$ denotes the derivative of $\left.p\right)$.
(a) (6 pts) Show that S is a subspace of P_{4}.
(b) (6 pts) Find a basis for S.
2. (8 pts) Use a Wronskian to show that for any $n \geq 1$, the functions $p_{1}(x)=1, p_{2}(x)=x, \ldots, p_{n}(x)=x^{n-1}$ are linearly independent in $C(-\infty, \infty)$. From this and Theorem 3.4.1, argue that $C(-\infty, \infty)$ cannot have a finite dimensional basis.
