\qquad
\qquad

Final Exam
 MAP 2302: Summer B 2019

1. (14 pts) Answer True or False. No justification is necessary (unless the question looks ambiguous). (2 pts each)
(a) $y=3 e^{2 x}$ is a solution for $y^{\prime}=2 y$ True False
(b) The general solution for the equation $y^{\prime \prime}-9 y=0$ is $y=c_{1} e^{3 x}+c_{2} e^{-3 x}$, with c_{1}, c_{2} constants.

True False
(c) The UC method can be applied to find a particular solution of $y^{\prime \prime}-9 y=x^{2} e^{2 x} \sin x$. True False
(d) The function $e^{x^{2}}$ has a Laplace transform. True False
(e) Given that $y=e^{x}$ is a solution of $\left(x^{2}+x\right) y^{\prime \prime}-\left(x^{2}-2\right) y^{\prime}-(x+2) y=0$, a second linearly independent solution can be found using the substitution $y=e^{x} v$.

True False

(f) The functions $\{\sin (2 x), \cos (2 x)\}$ are linearly dependent. True False
(g) The IVP problem $y^{\prime}=x y^{2}, y(1)=0$, has unique solution the trivial solution $y(x)=0$. True False
2. (15 pts) Short answers:
(a) (3 pts) Suppose a simple harmonic motion (from Ch 5.2) has the formula $x(t)=2 \sin (t)+3 \cos (t)$. What is the amplitude of the motion?
(b) (3 pts) Give the standard form of a Bernoulli DE, from Ch. 2.3.B.
(c) (3 pts) Give the formula for an integrating factor μ, for a linear DE $y^{\prime}+P(x) y=Q(x)$.
(d) (6 pts) Find the singular points of the $\mathrm{DE}\left(x^{3}+x^{2}\right) y^{\prime \prime}+y^{\prime}+x y=0$, and state whether they are regular singular or irregular singular points.
3. (15 pts) Find the general solution (implicit form OK) for the first order DE

$$
\left(x^{2}+y^{2}\right) d x+\left(2 x y+y^{2}\right) d y=0
$$

4. (15 pts) Find the general solution for $y^{\prime \prime}+4 y=16 e^{-2 x}$. UC method is suggested, although other ways are possible (and acceptable too).
5. (15 pts) Find a series solution in powers of x for the I.V.P. $y^{\prime \prime}+x y^{\prime}-2 y=0, y(0)=0, y^{\prime}(0)=1$. OK to list just the first three non-zero terms, but you should also list the recursive relation.
6. (15 pts) Use a Laplace transform to solve this IVP, where δ is the usual Dirac delta function:

$$
y^{\prime}-2 y=\delta(t-3), \quad y(0)=1
$$

Simplify completely, writing the solution in piecewise form if necessary. Do not worry if $y(t)$ is not continuous.
7. Choose ONE proof, but you could do TWO for possible bonus. Note the different values.
(A) (12 pts) Show that $L\left(e^{a t}\right)=\frac{1}{s-a}$, for $s>a$.
(B) (18 pts) Compute the convolution of $\sin (b t)$ with itself and explain how the result is linked with the first formula 8 in the table prepared by Christian. Hint: you may need the identity $\sin (A) \sin (B)=\frac{1}{2}(\cos (A-B)-\cos (A+B))$
(C) (18 pts) Justify (as done in class or in the textbook) the formula $L\left\{\delta\left(t-t_{0}\right)\right\}=e^{-t_{0} \cdot s}$

