Name: \qquad Panther ID: \qquad

Exam 1

MAT 3501
Fall 2019

1. (15 pts) For each of the following, answer if the statement is True or False. Then give a brief justification. (a) The product of any two rational numbers is rational. True False Justification:
(b) $\log _{2} 3$ is irrational. True False

Justification:
(c) If p is prime and $p \geq 3$ then $(p+3) \mid p$!. True False

Justification:
2. (15 pts) (a) Find the prime factorization for the number $N=49725$.
(b) If $N=49275$ is the product of the ages of a group of teenagers, how many teenagers are there and what are their ages?
3. (15 pts) Prove (by induction, or otherwise) that for all $n \geq 1$
$1^{3}+2^{3}+3^{3}+\ldots+(n-1)^{3}+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
4. (20 pts) A number (or word, or even phrase) is called a palindrome if it reads the same forward or backward.
(a) How many palindromes with exactly five digits are there in base 10 ?
(b) Show that if N is a palindrome in base 10 with an even number of digits, then N is divisible by 11.
(c) Discover and prove a similar statement as in (b) for palindromes in bases other than 10 .
(d) Find, if possible, a palindrome N in base 10, so that, written in base 2 , it is also a palindrome with 6 digits.
5. (15 pts) (a) Show by example that if $a b \equiv a c(\bmod n)$, then it is NOT necessarily true that $b \equiv c(\bmod n)$. Thus, while we can add, subtract and multiply with mods, division requires care.
(b) Show that if $a b \equiv a c(\bmod n)$ and if a and n are relatively prime, THEN it follows that $b \equiv c(\bmod n)$.
6. (15 pts) You have an unlimited supply of 5 cent stamps and 7 cent stamps.
(a) Describe all possible ways in which you can make 101 cents worth of postage with 5 cent and 7 cent stamps.
(b) Find the smallest positive integer n_{0} with the property that for any $n \geq n_{0}$, a postage of n cents can be realized with 5 cent and 7 cent stamps.
7. (15 pts) Choose ONE of the following proofs. If you do both, the second score may give some bonus towards a previous problem with a lower score.
(A) Show that if a, b are positive integers, then there exist integers m, n so that $m a+n b=\operatorname{gcd}(a, b)$.
(B) Show that there are infinitely many primes.

