Name:		Panther ID:		
Exam 1	MAT 3501	Fall 2019		
1. (15 pts) For each of the following, answer if the statement is True or False. Then give a brief justification.				
(a) The product of any t Justification:	wo rational numbers is r	ational.	True	False
(b) $\log_2 3$ is irrational. Justification:	True False	3		
(c) If p is prime and $p \ge$ Justification:	3 then $(p+3) p!$.	True	False	

2. (15 pts) (a) Find the prime factorization for the number N = 49725.

(b) If N = 49275 is the product of the ages of a group of teenagers, how many teenagers are there and what are their ages?

3. (15 pts) Prove (by induction, or otherwise) that for all $n\geq 1$

$$1^3+2^3+3^3+\ldots+(n{-}1)^3+n^3=\Big(\frac{n(n+1)}{2}\Big)^2$$

- $\textbf{4. (20 pts) A number (or word, or even phrase) is called a$ *palindrome* $if it reads the same forward or backward.}$
- (a) How many palindromes with exactly five digits are there in base 10?
- (b) Show that if N is a palindrome in base 10 with an even number of digits, then N is divisible by 11.

(c) Discover and prove a similar statement as in (b) for palindromes in bases other than 10.

(d) Find, if possible, a palindrome N in base 10, so that, written in base 2, it is also a palindrome with 6 digits.

5. (15 pts) (a) Show by example that if $ab \equiv ac \pmod{n}$, then it is NOT necessarily true that $b \equiv c \pmod{n}$. Thus, while we can add, subtract and multiply with mods, division requires care.

(b) Show that if $ab \equiv ac \pmod{n}$ and if a and n are relatively prime, THEN it follows that $b \equiv c \pmod{n}$.

6. (15 pts) You have an unlimited supply of 5 cent stamps and 7 cent stamps.

(a) Describe all possible ways in which you can make 101 cents worth of postage with 5 cent and 7 cent stamps.

(b) Find the smallest positive integer n_0 with the property that for any $n \ge n_0$, a postage of n cents can be realized with 5 cent and 7 cent stamps.

7. (15 pts) Choose ONE of the following proofs. If you do both, the second score may give some bonus towards a previous problem with a lower score.

(A) Show that if a, b are positive integers, then there exist integers m, n so that $ma + nb = \gcd(a, b)$.

(B) Show that there are infinitely many primes.