Name:

\qquad

Panther ID:

\qquad
Worksheet - 10/10
MAT 3501
Fall 2019

1. (a) Use the fundamental theorem of algebra to show that any polynomial with real coefficients can be decomposed as a product of linear or quadratic factors, all with real coefficients.
(b) You mention the above result to your students and one comes up and says: "I thought that a polynomial like $x^{4}+1$ cannot be factored." How do you answer?
(c) Find a factoring as in part (a) for the polynomial $p(x)=x^{3}+2$.
2. Suppose that $p(x)$ is a polynomial of odd degree with real coefficients. Show that the equation $p(x)=0$ must have at least one real real solution.
3. Let $x_{1}, x_{2}, x_{3} \in \mathbf{C}$ be the roots of the polynomial $p(x)=x^{3}+2 x^{2}-3 x+4$. Use Viete's relations to find:
(a) $x_{1} x_{2} x_{3}$
(b) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
(c) $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$
4. Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbf{C}$ be the roots of the polynomial $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$.
(a) Find the roots of the polynomial $\widetilde{p}(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}$.
(b) Find $\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}+\ldots+\frac{1}{x_{n}^{2}}$.
5. Determine all polynomials $p(x)$ so that
$p\left(x^{2}+1\right)=(p(x))^{2}+1$ and $p(0)=0$.
