The number e and compound interest

1. Activity for you and your students.

Suppose you inherit $\$ 1$ (If it is more exciting, you could also assume that " $\$ 1$ " is really $\$$ $1,000,000$, but work with it as 1). Suppose you also find a bank that pays an annual interest rate $r=100 \%$ and you deposit your inheritance there. How much money would you have in your account at the end of the year if:
(a) the interest is compounded yearly?
(b) the interest is compounded monthly?
(c) the interest is compounded daily?
(d) the interest is compounded n times a year?
(e) the interest is compounded continuously? (Hint: use a limit for this.)

2. A proof that you should see once.

Your answer for $1(\mathrm{e})$ should have been $\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}$
This limit exists and, by definition, is the famous number $e=2.718281828459045 \ldots$. But how does one show rigorously that the sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ converges? The calculus "proofs" with l'Hopital's rule are not really rigorous, as this limit is essentially used in proving that the derivative of $\ln x$ is $1 / x$.
One shows that the sequence $\left\{a_{n}\right\}$ is bounded and increasing, hence convergent.
For $\left\{a_{n}\right\}$ bounded, we claim that $0 \leq a_{n} \leq 3$ for any $n \geq 1$.
The left inequality is obvious. To get the right, we use the binomial formula

$$
a_{n}=1+C_{n}^{1} \frac{1}{n}+C_{n}^{2} \frac{1}{n^{2}}+C_{n}^{3} \frac{1}{n^{3}}+\ldots+C_{n}^{n} \frac{1}{n^{n}}
$$

and note

$$
C_{n}^{1} \frac{1}{n}=\frac{n}{1} \cdot \frac{1}{n}=1, C_{n}^{2} \frac{1}{n^{2}}=\frac{n(n-1)}{1 \cdot 2} \cdot \frac{1}{n^{2}} \leq \frac{1}{2}, C_{n}^{3} \frac{1}{n^{3}}=\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \cdot \frac{1}{n^{3}} \leq \frac{1}{2^{2}}, \ldots
$$

Thus

$$
a_{n} \leq 1+1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}}=3-\frac{1}{2^{n-1}} \leq 3
$$

To show that $\left\{a_{n}\right\}$ is increasing, we'll use at a crucial point the Bernoulli inequality: $(1+x)^{n} \geq 1+n x$, for any real number $x \geq-1$ and any natural number n.
A proof of this can be given by induction (Exercise!).
Consider the quotient

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+2)^{n+1} \cdot n^{n}}{(n+1)^{2 n+1}}=\frac{n+1}{n} \cdot \frac{(n+2)^{n+1} \cdot n^{n+1}}{(n+1)^{2 n+2}}=\frac{n+1}{n} \cdot\left(\frac{n^{2}+2 n}{n^{2}+2 n+1}\right)^{n+1},
$$

which we finally rewrite as

$$
\frac{a_{n+1}}{a_{n}}=\frac{n+1}{n} \cdot\left(1-\frac{1}{(n+1)^{2}}\right)^{n+1} .
$$

Applying now the Bernoulli inequality, we get

$$
\frac{a_{n+1}}{a_{n}} \geq \frac{n+1}{n} \cdot\left(1-\frac{n+1}{(n+1)^{2}}\right)=1 .
$$

Thus, we proved that $a_{n+1} \geq a_{n}$ for all n, so the sequence $\left\{a_{n}\right\}$ is increasing.
3. One more exercise for you. Using now the limit

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

show that if you deposit a principal P dollars in a bank account that pays an annual interest rate r compounded continuously, your balance in the account $B(t)$ after t years since the deposit is given by

$$
B(t)=P e^{r t}
$$

