Name:
Worksheet - Oct. 31

MAT 3501

Panther ID:
Fall 2019

1. (a) Use Euler's formula to discover identities for $\cos (x+y)$ and $\sin (x+y)$. Replacing y by $-y$, you will also find the identities for $\cos (x-y)$ and $\sin (x-y)$.
(b) Use Euler's formula to justify DeMoivre's identity:

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

(c) Use DeMoivre's identity to find a formula for $\cos (5 \theta)$ in terms of $\cos (\theta)$.
2. (a) Use trigonometric identities in Exercise 1(a), to show the identity:

$$
\cos (n+1) \theta=2 \cos n \theta \cos \theta-\cos (n-1) \theta
$$

(b) Use part (a) and induction to show that for any θ and any positive integer n, there exists a polynomial with integer coefficients and lead coefficient 1 so that

$$
2 \cos n \theta=1 x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, \text { where } x=2 \cos \theta
$$

In other words, we can represent $2 \cos n \theta$ as a polynomial of degree n with integer coefficients and lead coefficient 1 in x, where $x=2 \cos \theta$.
(c) Use (b) to show that if θ is a rational number representing an angle in degrees, then $\cos (\theta)$ is an algebraic number.
(d) Suppose now that θ is an integer representing an angle in degrees, $0 \leq \theta \leq 90$. Show that if θ is not 0,90 , or 60 , then $\cos (\theta)$ must be irrational. Hint: Use (b) or (c) and the rational root Theorem.
3. (a) Consider the function $f: \mathbf{C} \rightarrow \mathbf{C}$ defined by $f(z)=3 z$. Describe geometrically this function; that is describe geometrically, the relation between z and $f(z)$. In general, functions $f: \mathbf{C} \rightarrow \mathbf{C}$ of the form $f(z)=k z$, with $k \in \mathbf{R}$ are called homotheties of the plane.
(b) Consider the function $f: \mathbf{C} \rightarrow \mathbf{C}$ defined by $f(z)=z /(1-i)$. Describe geometrically this function; that is describe geometrically, the relation between z and $f(z)$. Hint: Think of the polar form of z and $f(z)$.

