\qquad

Panther ID:

\qquad
Worksheet - Sep. 24-26
MAT 3501
Fall 2019

1. (a) Write each of the following numbers in base $10: \overline{1234}_{5}, \overline{110101}_{2}$.
(b) How do you know if a number written in base 2 is an even or odd number in base 10? How do you know if a number if a number written in base 2 corresponds to a number divisible by 8 in base 10 ? Generalize this observation.
(c) Given the base 10 number 323, apply the algorithm to write the number in base 7 and then in base 4 .
(d) Can you give an explanation why the algorithm works? (You can start with a concrete example, e.g. 323, but ideally your explanation should capture why the algorithm works in general.)
2. (a) Show that for a number written in base $10, \overline{a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}}$, we have

$$
\overline{a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}} \equiv a_{0}-a_{1}+a_{2}-\ldots+(-1)^{n} a_{n} \quad(\bmod 11) .
$$

(b) Apply part (a) to find the remainder of 987654321 when divided by 11.
3. Twin primes are numbers of the form $p, p+2$, both of them prime. It is still an open problem whether there are infinitely many twin primes. You are not asked to solve this open problem, but try the following:
(a) Prove that that the sum of twin primes other than 3,5 is always divisible by 12 .
(b) Triplet primes are numbers of the form $p, p+2, p+4$, all three of them prime. Show that $3,5,7$ are the only triplet primes.
4. (a) Show that the equation $a x \equiv 1(\bmod n)$ has a solution if and only if $\operatorname{gcd}(a, n)=1$.
(b) More generally than (a), show that the equation $a x \equiv c(\bmod n)$ has a solution if and only if $\operatorname{gcd}(\mathrm{a}, \mathrm{n}) \mid \mathrm{c}$.
(c) Using (a), show that if p is prime, all the non-zero elements in \mathbf{Z}_{p} have an inverse with respect to the multiplication. (This implies that when p is prime, $\left(\mathbf{Z}_{p},+, \cdot\right)$ is a (commutative) field.)

