Name: \qquad
Trigonometry
Worksheet June 10

Panther ID:

Summer A 2016

1. In each part, you are given the polar coordinates of a point. First plot the point, and then find the rectangular coordinates of each point. Finally, give one different polar coordinates representation of the same point.
(a) $\left(r=3, \theta=90^{\circ}\right)$
(b) $\left(r=-5, \theta=\frac{\pi}{6}\right)$
(c) $\left(r=2, \theta=\frac{5 \pi}{4}\right)$
2. Convert each rectangular equation to a polar equation that expresses r in terms of θ.
(a) $x^{2}+y^{2}=25$
(b) $(x+3)^{2}+y^{2}=9$
(c) $x^{2}=3 y$
3. Convert each polar equation to a rectangular coordinate equation.
(a) $r \sin \theta=-3$
(b) $r=2 \cos \theta$
(c) $r^{2} \sin (2 \theta)=6$
4. Convert to rectangular coordinates to show that the graph of $r=a \cos \theta$ is a circle with center at $(a / 2,0)$ and radius $a / 2$.

For polar graph paper see the link on http://mathstat.fiu.edu/useful-information/math-resources/trigonometry/
5. (a) Suppose that in a triangle we know two sides, a, b, and the angle C between them. Show that the area of the triangle is given by $A=\frac{a b \sin C}{2}$.
(b) Consider a regular pentagon inscribed in a circle of radius r and let A_{5} denote the area of this pentagon. Find a formula for A_{5} in terms of the radius r of the circle. For now, do not evaluate the trig. function that appears in your answer, but express in radians the angle.
Hint: Using the center of the circle, divide the pentagon into 5 congruent triangles.
(c) With the same reasoning, if a regular decagon is inscribed in a circle of radius r, find a formula for the area A_{10} of the decagon in terms of r.
(d) Generalize the formulas in parts (b) and (c). If a regular polygon with n-sides is inscribed in a circle with radius r, find a formula for the area A_{n} of the n-gon in terms of r and n.
(e) Now use your calculator to evaluate the trig. function in your answer and get (approximative) decimal expressions for A_{5}, A_{10}, A_{100}. (For example, for the area of a regular octogon, you'd get $A_{8} \approx 2.83 r^{2}$).
(f) In words, what do you think you are finding from A_{n} as n is getting larger and larger?

Note: With the notion of limit, which you'll learn in Calculus, the process you did above will become completely rigorous. What you discovered numerically above is the following limit

$$
\lim _{k \rightarrow+\infty} k \sin \left(\frac{\pi}{k}\right)=\pi
$$

6. This problem is a homework due Wednesday, June $\mathbf{1 5}$. This is a repeat of problem 5, but this time for perimeter instead of area.
(a) Consider a regular pentagon inscribed in a circle of radius r and let P_{5} denote the perimeter of this pentagon. Find a formula for P_{5} in terms of the radius r of the circle. For now, do not evaluate the trig. function that appears in your answer, but express in radians the angle.
Hint: Just as before, using the center of the circle, divide the pentagon into 5 congruent triangles and use the law of cosines in one of these triangles.
(c) With the same reasoning, if a regular decagon is inscribed in a circle of radius r, find a formula for the perimeter P_{10} of the decagon in terms of r.
(d) Generalize the formulas in parts (b) and (c). If a regular polygon with n-sides is inscribed in a circle with radius r, find a formula for the perimeter P_{n} of the n-gon in terms of r and n.
(e) Now use your calculator to evaluate the trig. function in your answer and get (approximative) decimal expressions for P_{5}, P_{10}, P_{100}. (For example, for the area of a regular octogon, you'd get $P_{8} \approx 6.123 r$).
(f) In words, what do you think you are finding from P_{n} as n is getting larger and larger?
