Worksheet-Review for Exam 3

Trigonometry

1. In each part, you are given the polar coordinates of a point. First plot the point, and then find the rectangular coordinates of each point. Finally, give two different polar coordinates representation of the same point.
(a) $\left(r=-5, \theta=\frac{\pi}{4}\right)$
(b) $\left(r=2, \theta=\frac{5 \pi}{6}\right)$
2. (a) Convert to rectangular coordinates $r=4 \csc \theta$ and graph the curve.
(b) Convert to rectangular coordinates $r=6 \cos \theta-2 \sin \theta$. Then complete the squares to show that the graph of the curve is a circle and graph the curve.
3. Identify and make a rough sketch of each polar equation
(a) $r=3-3 \cos (\theta)$
(b) $r=5 \sin (2 \theta)$
(c) $r=2 \cos (3 \theta)$.
4. Solve each of the following triangles. Specify if no solution, or more than one solution exist.
(a) Solve the triangle with $a=3, b=4, A=20^{\circ}$.
(b) Solve the triangle with angles $A=10^{\circ}, C=100^{\circ}$, and side $b=2$.
(c) Solve the triangle with $a=24, b=26$, and $c=10$.
5. (a) Suppose that in a triangle we know two sides, a, b, and the angle C between them. Show that the area of the triangle is given by $A=\frac{a b \sin C}{2}$.
(b) Find the area of a rhombus with sides of 3 cm and one angle of 30°. Also find the length of the diagonals of this rhombus.
6. Pbs. 52,58 , section 7.1 textbook.
7. Pbs. 39, 40, 41. section 7.2.
8. Solve each equation on the interval $0 \leq \theta<2 \pi$
a) $\sin \theta-\sqrt{3} \cos \theta=0$
b) $\cos \theta+\sin \theta=-\sqrt{2}$
c) (Use the appropriate double angle formula first) $\sin (2 \theta)=2 \sin \theta 0$
d) (Use the appropriate double angle formula first) $\cos (2 \theta)=3-\sin \theta$
e) (Use the appropriate identity first) $5(1+\cos \theta)=\sin ^{2} \theta$
