Name:	_	Panther ID:
Worksheet - June 20	Trigonometry	Summer A 2016

1. For each given complex number, plot the number and then find a polar form.

(a) z = 3+3i (b) z = 5i (c) $z = 2-i\sqrt{3}$ (d) z = -4

2. Given a complex number z = a + ib, the number z̄ = a - ib is called the complex conjugate of z.
(a) Show that z ⋅ z̄ = |z|² where |z| = r = √a² + b² is the modulus of the complex number z.

(b) Use (a) to show that the quotient of two complex numbers $\frac{z_1}{z_2}$ can be computed by

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2}$$

(c) Use (b) to find the quotient $\frac{z_1}{z_2}$ if $z_1 = 1 + i$, $z_2 = 2 - i\sqrt{3}$. Repeat for $z_1 = -3 + 4i$, $z_2 = -3 - 4i$.

(d) If $z = re^{i\theta}$, what is the polar form of the conjugate \overline{z} ?

(e) Use (d) to find the quotient $\frac{z_1}{z_2}$ if $z_1 = 3\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$, $z_2 = 4\left(\cos\frac{\pi}{10} + i\sin\frac{\pi}{10}\right)$. Answer in polar form.

3. Use polar form and DeMoivre formula to find $(1+i)^{10}$.

4. (a) Find all complex solutions of $z^5 = 1$ and plot the solutions on a rectangular coordinate system.

(b) Find all complex solutions of $z^4 = 25i$ and plot the solutions on a rectangular coordinate system.

(c) Find the complex third roots of 1 + i and plot them.