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For any compact almost complex manifold (M, J), the last two authors [8] defined two

subgroups H+
J (M), H−

J (M) of the degree 2 real de Rham cohomology group H2(M, R).

These are the sets of cohomology classes which can be represented by J-invariant,

respectively, J-antiinvariant real 2-forms. In this paper, it is shown that in dimension 4

these subgroups induce a cohomology decomposition of H2(M, R). This is a specifically

four-dimensional result, as it follows from a recent work of Fino and Tomassini [6].

Some estimates for the dimensions of these groups are also established when the almost

complex structure is tamed by a symplectic form and an equivalent formulation for a

question of Donaldson is given.

1 Introduction

In this paper, we continue to study differential forms on an almost complex four-manifold

(M, J) following [8]. We are particularly interested in the subgroups H+
J (M) and H−

J (M) of

the degree 2 real de Rham cohomology group H2(M; R). These are the sets of cohomol-

ogy classes which can be represented by J-invariant, respectively, J-antiinvariant real

2-forms. The goal pursued by defining these subgroups is simple: understand the effects

of the action of the almost complex structure on forms at the level of cohomology and
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introduce the idea of (real) cohomology type, via the almost complex structure. Certainly,

the subgroups H±
J (M) and their dimensions h±

J are diffeomorphism invariants of the al-

most complex manifold (M, J). We would like to show that these invariants appear to be

interesting, particularly so in dimension 4. Here is the outline of our paper.

Our first main result, Theorem 2.3 in Section 2, shows that on any compact

almost complex four-manifold the subgroups H+
J (M) and H−

J (M) will induce a direct sum

decomposition of H2(M, R). With the terminology introduced in [8], Theorem 2.3 says that

any almost complex structure on a compact four-dimensional manifold is C ∞-pure and

full. See Section 2 for precise definitions. Theorem 2.3 turns out to be specifically a four-

dimensional result. Indeed, Example 3.3 of Fino and Tomassini [6] shows the existence of

a compact six-dimensional nilmanifold with an almost complex structure which is not

C ∞-pure (the intersection of H+
J (M) and H−

J (M) is nonempty). (We learned of the preprint

[6] while putting together the final form of our paper. There are further interesting links

between [6] and our paper; see further comments in Section 2. The overlap is minimal

though.) Taking products of this example with arbitrary almost complex manifolds, one

obtains examples in all dimensions ≥6 of almost complex structures which are not

C ∞-pure.

Also in Section 2, for a compact four-manifold with an integrable J, we show that

subgroups H+
J (M) and H−

J (M) relate naturally with the (complex) Dolbeault cohomology

groups. We also show that a complex type decomposition for cohomology does not hold

for nonintegrable almost complex structures (see Lemma 2.12 and Corollary 2.14).

In Section 3, we focus on almost complex structures J which admit compatible

or tame symplectic forms and we give estimates for the dimensions h±
J in this case. If

there are J-compatible symplectic forms, then the collection of cohomology classes of

all such forms, the so-called J-compatible cone, Kc
J (M), is a subcone of H2(M; R). In fact,

Kc
J (M) ⊂ H+

J (M)

as a (nonempty) open convex cone. Thus, it is important to determine h+
J as well as

H+
J (M). Moreover, it is shown in [8] that if J is also C ∞-full (the sum of H+

J (M) and H−
J (M)

is H2(M; R)), then

Kt
J (M) = H−

J (M) + Kc
J (M),

where Kt
J (M) is the collection of cohomology classes of J-tamed symplectic forms. Thus,

it is also important to understand the group H−
J (M).
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Our investigation of almost complex structures which are tamed by symplectic

forms is also motivated by the following question of Donaldson [4].

Question 1.1. If J is an almost complex structure on a compact four-manifold M which

is tamed by a symplectic form ω, is there a symplectic form compatible with J?

In [8], it was shown that the question has an affirmative answer when J is in-

tegrable. For progress on a related problem proposed by Donaldson, the symplectic

Calabi–Yau equation and its relation to Question 1.1, the reader is referred to [4, 11–13].

We observe in Theorem 3.3 that an estimate on h+
J which is immediate for com-

patible J’s can be carried over to the case of tamed J’s as well. Section 3 ends with an

equivalent formulation of Donaldson’s Question 1.1.

In a later paper [5], we will further study the group H−
J .

Convention: The groups indexed by (p, q) arise from complex differential forms. The

groups indexed by ± arise from real differential forms.

2 Cohomology Decomposition of almost Complex Four-Manifolds

2.1 The groups H±
J

Let M be a compact 2n-dimensional manifold and suppose J is an almost complex

structure on M. J acts on the bundle of real 2-forms �2 as an involution, by α(·, ·) →
α(J·, J·), thus we have the splitting:

�2 = �+
J ⊕ �−

J . (1)

We will denote by �2 the space of 2-forms on M (C ∞-sections of the bundle

�2), �+
J the space of J-invariant 2-forms, etc. For any α ∈ �2, the J-invariant (resp. J-

antiinvariant) component of α with respect to the decomposition (1) will be denoted by α′

(resp. α′′).

Definition 2.1 [8]. Let Z2 denote the space of closed 2-forms on M and let Z±
J = Z2 ∩ �±

J .

Define

H±
J (M) = {a ∈ H2(M; R)|∃ α ∈ Z±

J such that [α] = a}. (2)
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2.2 The type decomposition of H2(M; R)

Obviously,

H+
J (M) + H−

J (M) ⊆ H2(M; R),

but if J is not integrable, it is not clear whether equality holds and whether the

intersection of the two subspaces is trivial. Thus, the following definitions were also

introduced in [8].

Definition 2.2. (i) J is said to be C ∞-pure if H+
J ∩ H−

J = 0; and

(ii) J is said to be C ∞-full if H2(M; R) = H+
J (M) + H−

J (M).

Note: The terms pure and full almost complex structures were also defined in [8] in

terms of currents. We will not use these in this paper, so we refer the reader to [8] and

[6] for more details on this. Note also that the paper of Fino and Tomassini provides a

number of interesting cases when the notions of pure and full almost complex structures

are equivalent to the C ∞ counterparts (Theorems 3.7 and 4.1 in [6]). See also Remark 2.7.

Our first result is the following theorem.

Theorem 2.3. If M is a compact four-dimensional manifold, then any almost com-

plex structure J on M is C ∞-pure and full. Thus, there is a direct sum cohomology

decomposition

H2(M; R) = H+
J (M) ⊕ H−

J (M). (3)

Before the proof, we should set some more preliminaries and notations. The

particularity of dimension 4 is that the Hodge operator ∗g of a Riemannian metric g on

M also acts as an involution on �2. Thus, we have the well-known selfdual, anti-selfdual

splitting of the bundle of 2-forms:

�2 = �+
g ⊕ �−

g . (4)

We will denote by �±
g the space of sections of �±

g and by α+, α− the selfdual,

anti-selfdual components of a 2-form α. Since the Hodge de Rham Laplacian commutes

with ∗g, the decomposition (4) holds for the space of harmonic 2-forms Hg as well. By

Riemannian Hodge theory, we get the metric induced cohomology decomposition

H2(M; R) = Hg = H+
g ⊕ H−

g . (5)

As in Definition 2.1, one can define

H±
g (M) = {a ∈ H2(M; R)|∃ α ∈ Z±

g such that [α] = a}.
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Of course, Z±
g := Z2 ∩ �±

g = H±
g , so clearly H±

g (M) = H±
g , and (5) can be written as

H2(M; R) = H+
g ⊕ H−

g .

We will need the following special feature of the Hodge decomposition in dimension 4.

Lemma 2.4. If α ∈ �+
g and α = αh + dθ + δ� is its Hodge decomposition, then (dθ )+g =

(δ�)+g and (dθ )−g = −(δ�)−g . In particular, the 2-form

α − 2(dθ )+g = αh

is harmonic and the 2-form

α + 2(dθ )−g = αh + 2dθ

is closed.

Proof. Since ∗α = α, by the uniqueness of the Hodge decomposition, we have ∗(dθ ) = δ�,

∗(δ�) = dθ . The lemma follows. �

Remark 2.5. The decomposition α = αh + 2(dθ )+g for a selfdual form α can also be seen

as the Hodge decomposition for �+
g associated to the elliptic differential complex

0 −→ �0 d−→ �1 d+−→ �+
g −→ 0.

Suppose now that J is an almost complex structure and g is a J-compatible

Riemannian metric on the four-manifold M in the sense that g is J-invariant, i.e.

g(Ju, Jv) = g(u, v). The pair (g, J) defines a J-invariant 2-form ω by

ω(u, v) = g(Ju, v). (6)

Such a triple (J, g, ω) is called an almost Hermitian structure. An almost Hermi-

tian structure (J, g, ω) is called almost Kähler if ω is closed.

Given J, we can always choose a compatible g. The relations between the decom-

positions (1) and (4) on a four-dimensional almost Hermitian manifold are

�+
J = R(ω) ⊕ �−

g , (7)

�+
g = R(ω) ⊕ �−

J , (8)

�+
J ∩ �+

g = R(ω), �−
J ∩ �−

g = 0. (9)

The following lemma is an immediate consequence of (8).
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Lemma 2.6. Let (M4, g, J, ω) be a four-dimensional almost Hermitian manifold. Then

Z−
J ⊂ H+

g and the natural map Z−
J → H−

J is bijective. More precisely, if H+,ω⊥
g denotes the

subspace of harmonic selfdual forms pointwise orthogonal to ω, we have

H−
J = Z−

J = H+,ω⊥
g . (10)

In particular, any closed J-antiinvariant form α (α �≡ 0 ) is nondegenerate on an

open dense subset M′ ⊆ M.

Proof. Since �−
J ⊂ �+

g , a closed J-antiinvariant 2-form is a selfdual harmonic form. In

particular, there exists no nontrivial exact J-antiinvariant 2-form. Thus, the natural map

Z−
J → H−

J is bijective. The equality (identification) (10) is obvious. For the last statement,

note that any selfdual form is nondegenerate on the complement of its nodal set M′ = M \
α−1(0). On the other hand, any harmonic form satisfies the unique continuation property,

so if α �≡ 0, its nodal set α−1(0) has empty interior. In fact, from [2] it is known more:

α−1(0) has Hausdorff dimension ≤ 2. �

We are now ready to give the proof of Theorem 2.3

Proof of Theorem 2.3. Let g be a J-compatible Riemannian metric, and let ω be the

2-form defined by (g, J). We start by proving that J is C ∞-pure. If a ∈ H+
J ∩ H−

J , let α′ ∈
Z+

J , α′′ ∈ Z−
J , be representatives for a. Then

a ∪ a =
∫

M
α′ ∧ α′′ = 0,

but by Lemma 2.6, we also have

a ∪ a =
∫

M
α′′ ∧ α′′ =

∫
M

|α′′|2g dμg.

Thus, α′′ = 0, so a = 0.

Next, we prove that J is C ∞-full. Suppose the contrary. Then there exists a class

a ∈ H2(M; R) which is (cup product) orthogonal to H+
J ⊕ H−

J . Since H−
g ⊂ H+

J , we can

assume a ∈ H+
g . Let α be the harmonic, selfdual representative of a and denote f =<

α, ω >. The function f is not identically zero, as otherwise it follows from Lemma 2.6

that a ∈ H−
J . Now we apply Lemma 2.4 to the selfdual form fω. The closed form ( fω)h +

2( fω)exact is also J-invariant; indeed, it is equal to fω + 2(( fω)exact)−g . (Here and later,

we shall denote αexact the exact part from the Hodge decomposition of a form α.) Thus,
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( fω)h + 2( fω)exact is a representative for a class b ∈ H+
J . But

a ∪ b =
∫

M
< α, ( fω)h + 2( fω)exact > dμg

=
∫

M
< α, fω + 2(( fω)exact)−g > dμg =

∫
M

f2 dμg �= 0.

This contradicts the assumption that a is orthogonal to H+
J ⊕ H−

J . �

Remark 2.7. (i) Combining Theorem 2.3 with Theorem 3.7 from [6], it follows that any

almost complex structure on a compact four-dimensional manifold is not just pure and

full for forms, but for currents as well.

(ii) Theorem 2.3 does not generalize to higher dimensions. A six-dimensional al-

most complex manifold which is not C ∞-pure is given in Example 3.3 of [6]. Higher dimen-

sional examples can be obtained from the following simple observation: if (M1, J1), (M2, J2)

are almost complex manifolds and one of them is not C ∞-pure, then (M1 × M2, J1 ⊕ J2) is

not C ∞-pure either.

By contrast, note the following result (also proved in [6], Proposition 3.2).

Proposition 2.8. If J is an almost complex structure on a compact manifold M2n and J

admits a compatible symplectic structure, then J is C ∞-pure.

Proof. On any almost Hermitian manifold (M2n, g, J, ω), if α ∈ �−
J , then

∗g (α) = α ∧ ωn−2. (11)

Thus, if ω is symplectic and α is closed, (11) implies that ∗g(α) is also closed. Hence,

for any almost Kähler structure (g, J, ω), Z−
J ⊂ H2

g. It is straightforward now to generalize

the first part of the proof of Theorem 2.3. Let a ∈ H+
J ∩ H−

J , and let α′ ∈ Z+
J , α′′ ∈ Z−

J be

representatives for a. Then

a ∪ a ∪ [ω]n−2 =
∫

M
α′ ∧ α′′ ∧ ωn−2 = 0,

but by (11), we also have

a ∪ a ∪ [ω]n−2 =
∫

M
α′′ ∧ α′′ ∧ ωn−2 =

∫
M

|α′′|2g dμg.

Thus, α′′ = 0, so a = 0. �
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2.3 The complexified H2

2.3.1 The groups H p,q
J

In all of the above, we referred to decompositions of real 2-forms. We now present the

relation with the more familiar splitting of bigraded complex 2-forms:

�2
C

= �
2,0
J ⊕ �

1,1
J ⊕ �

0,2
J . (12)

The relation between the decompositions (1) and (12) is well known:

�+
J = (

�
1,1
J

)
R
,

(13)
�−

J = (
�

0,2
J ⊕ �

2,0
J

)
R
.

Note that the bundle �−
J inherits an almost complex structure, still denoted J, by

β ∈ �−
J → Jβ ∈ �−

J , where Jβ(X, Y) = −β(J X, Y).

Definition 2.9. Let H p,q
J be the subspace of the complexified de Rham cohomology

H2(M; C), consisting of classes which can be represented by a complex closed form of

type (p, q).

Lemma 2.10. The groups H p,q
J have the following properties:

H p,q
J = Hq,p

J , (14)

H p,p
J = (

H p,p
J ∩ H2p(M; R)

) ⊗ C,
(15)(

H p,q
J + Hq,p

J

) = ((
H p,q

J + Hq,p
J

) ∩ H p+q(M; R)
) ⊗ C.

Proof. Relation (14) follows from the fact that a complex form � is closed if and only if

its conjugate � is closed. The equalities in (15) follow from (14) and the following fact:

let V be a real vector space and W a complex subspace of V ⊗R C, which as a subspace

is invariant under conjugation. Then W is the complexification of W ∩ V (see Remark 2.5

on p.139 in [3]). �

We now investigate the relation between the groups H±
J and H p,q

J . As we shall see

in Lemma 2.12, when J is not integrable, there is an important difference compared to

what (13) would have predicted.
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Lemma 2.11. For a compact almost complex manifold (M, J) of any dimension,

H+
J = H1,1

J ∩ H2(M; R), (16)

and

H1,1
J = H+

J ⊗R C. (17)

Proof. The relation (17) is a consequence of (16) and (15) with (p, p) = (1, 1). So we just

need to prove (16).

The inclusion H+
J ⊆ H1,1

J ∩ H2(M; R) is clear, so we now prove the converse inclu-

sion. An element in H1,1
J ∩ H2(M; R) can be represented by a complex d closed (1,1) form

ρ = σ + dτ , with σ a d closed real form. So it is also represented by the real d closed

(1,1) form 1
2 (ρ + ρ̄) = σ + d(τ + τ̄ ).

When J is integrable, the same argument appears in the proof of Theorem 2.13

in [3]. �

The next lemma is a well-known result (see e.g. [9]), recast in our terminology. It

can also be seen as a consequence and as a slight extension of Hitchin’s lemma [7].

Lemma 2.12. Let J be an almost complex structure on a compact four-manifold.

(
H2,0

J + H0,2
J

) =
⎧⎨
⎩H−

J ⊗R C, if J is integrable,

0, if J is not integrable.
(18)

In particular, if J is integrable, then

H−
J = (

H2,0
J + H0,2

J

) ∩ H2(M; R). (19)

Proof. A (complex) form  ∈ �
2,0
J is of the form

 = β + i Jβ, where β ∈ �−
J .

Assume β �≡ 0. The point of the lemma is that dβ = 0 and d(Jβ) = 0 occur si-

multaneously if and only if J is integrable. To see this, let Z j = X j − i JX j, j = 1, 2, 3 be

arbitrary (1,0) vector fields. Then

d(Z1, Z2, Z3) = −([Z2, Z3]1,0, Z1).
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Assuming dβ = d(Jβ) = 0, i.e. d = 0, the above relation implies [Z2, Z3]1,0 = 0.

This follows first on the set M′ = M \ β−1(0), but then everywhere on M by continuity,

since M′ is dense in M (see Lemma 2.6). This implies the integrability of J.

Conversely, assume that J is integrable and we want to show that dβ = 0 iff

d(Jβ) = 0. Using d = ∂ + ∂̄ and 2β =  + ̄, we have

2dβ = (∂ + ∂̄)( + ̄) = ∂̄ + ∂̄ .

(We used that ∂ = 0 since it is a (3,0) form on a complex surface.) Thus, dβ = 0 iff

∂̄ = 0. Similarly, d(Jβ) = 0 iff ∂̄(i) = 0. But it is obvious that ∂̄ = 0 iff ∂̄(i) = 0. �

Remark 2.13. There are examples of nonintegrable almost complex structures for which

the real group H−
J is nonzero, although, as shown above, the complex group H2,0

J + H0,2
J

is always zero in this case. See Example 2.18 and the remark that follows.

By the above two lemmas, we get the following corollary.

Corollary 2.14. Suppose J is an almost complex structure on a compact four-manifold.

Then J is always complex C ∞-pure in the sense H1,1
J ∩ H2,0

J ∩ H0,2
J = {0}. Moreover, J is

also complex C ∞-full, i.e.

H2(M; C) = H1,1
J ⊕ H2,0

J ⊕ H0,2
J ,

if and only if J is integrable or h−
J = 0.

2.3.2 Dolbeault decomposition when J is integrable

When J is integrable, there is the Dolbeault decomposition which has long been discov-

ered. We briefly recall this decomposition and relate it to the groups H p,q
J introduced in

Section 2.3.1.

The Fröhlicher spectral sequence of the double complex

(�∗(M) ⊗ C = ⊕�p,q, ∂, ∂̄)

reads (see p.41–5, p.140–1 in [3]):

E p,q
1 = H p,q

∂̄
(M) ⇒ H p+q(M; C).

The resulting Hodge filtration on H2(M; C) reads:

H2(M; C) = F 0(H2) ⊃ F 1(H2) ⊃ F 2(H2) ⊃ 0,
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where

F p(H2) = {[α], α ∈ ⊕p′+q′=2,p′≥p�
p′,q′ |dα = 0}. (20)

Since

H p,q
∂̄

(M) = E p,q
1 → E p,q

∞ = F p(H p+1(M; C))

F p+1(H p+1(M; C))
,

if the Fröhlicher spectral sequence degenerates at E1, then

H p,q
∂̄

(M) ∼= F p(H p+1(M; C))

F p+1(H p+1(M; C))
. (21)

For p+ q = 2, let

′H p,q(M) = F p(H2) ∩ F q(H2). (22)

Lemma 2.15. ′H p,q consists of de Rham classes which can be represented by a form of

type (p, q), i.e

′H p,q = H p,q
J . (23)

This should be known to experts; we record the argument here since it is useful

to elucidate the relation between H+
J and H1,1

∂̄
.

Proof. F 2(H2) consists of de Rham classes which can be represented by a form of type

(2, 0). Consequently, F 2(H2) consists of classes of (0, 2) forms.

It remains to show that F 1(H2) ∩ F 1(H2) consists of de Rham classes which can

be represented by a closed form of type (1, 1). First of all, every such de Rham class lies

in F 1(H2) and F 1(H2). On the other hand, by definition, a class is in F 1(H2) ∩ F 1(H2) if

and only if it is represented by closed forms α1 = α
1,1
1 + α

2,0
1 and α2 = α

1,1
2 + α

0,2
2 . Now

α1 − α2 = dβ, and it is easy to see that α1 − dβ1,0 = α2 + dβ0,1 is a d closed (1,1) form

representing the same class. �

A weight 2 formal Hodge decomposition is a decomposition of the form

H2(M; C) = ⊕p+q=2
′H p,q. (24)

Theorem 2.16 [3]. If (M, J) is a Kähler manifold or a complex surface, then the Fröhlicher

spectral sequence degenerates at E1, and there is a weight 2 formal Hodge decomposition.
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Consequently,

H2,0
∂̄

= E2,0
∞ ∼= F 2(H2) ∼= ′H2,0,

H1,1
∂̄

= E1,1
∞ ∼= F 1(H2)

F 2(H2)
∼= F 1(H2) ∩ F 1(H2) ∼= ′H1,1, (25)

H0,2
∂̄

= E0,2
∞ ∼= H2(M; C)

F 1(H2)
∼= F 2(H2) ∼= ′H0,2.

Together with (23), (16), and (19), we conclude the following theorem.

Proposition 2.17. If J is integrable on a compact four-manifold, then

H p,q
J = H p,q

∂̄
, (26)

and

H+
J = H1,1

∂̄
∩ H2(M; R), H−

J = (
H2,0

∂̄
⊕ H0,2

∂̄

) ∩ H2(M; R). (27)

Let us denote the dimension of H±
J by h±

J . When J is integrable, it follows from

Proposition 2.17 that

h+
J = h1,1

∂̄
, h−

J = 2h2,0
∂̄

. (28)

Together with the signature theorem (Theorem 2.7 in [3]), we get

h+
J =

{
b− + 1 if b1 even

b− if b1 odd,
h−

J =
{

b+ − 1 if b1 even

b+ if b1 odd.
(29)

It is a deep, but now well-known fact that the cases b1 even/odd correspond to

whether the complex surface (M, J) admits or not a compatible Kähler structure.

Notice that when J is integrable the dimensions h±
J are topological invariants.

Such properties will not hold for general almost complex structures. In fact, we conjec-

ture that for generic almost complex structures h−
J = 0. However, there are examples of

nonintegrable almost complex structures with h−
J �= 0. Here is one simple construction

of such examples.

Example 2.18. Let (M, g, J0, ω0) be a compact Kähler surface with b+ ≥ 3, and let  be

a (not identically zero) holomorphic (2,0) form on M (existence of such  is guaranteed

by the assumption b+ ≥ 3). Let β = Re(), J0β = Im() be the real and imaginary parts

of . Both β and J0β are closed J0-antiinvariant forms. Let f ∈ C ∞(M) be an arbitrary,

not identically zero, smooth function and consider the form ω f ,β = ω0 + fβ. Because β
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is pointwise orthogonal to ω0, the form ω f ,β is nondegenerate everywhere. Since ω f ,β is

also g-selfdual, it induces a g-compatible almost complex structure J on M. J is not

integrable except the case when f = constant and (M, g, J0) is hyper-Kähler (see, for

instance [1]). On the other hand, J0β is a nontrivial closed J-antiinvariant form. The last

statement is true because J0β is pointwise orthogonal to both ω0 and β. Thus, H−
J is

nontrivial.

Remark 2.19. In the above example, J and J0 are what we call metric related almost

complex structures, as they share a common compatible metric. In [5], we compute

the exact values of h±
J for all almost complex structures J which are metric related

to integrable ones. Example 6.2 of [6] exhibits a compact four-manifold which admits

no integrable complex structures, but which admits an almost complex structure with

h−
J = 1.

3 Estimates for h±
J when J is Tamed by a Symplectic Form

From Theorem 2.3, on any compact four-dimensional almost complex manifold (M, J),

we have

h+
J + h−

J = b2. (30)

The decomposition (8) also leads to the following immediate estimates

h+
J ≥ b−, h−

J ≤ b+. (31)

One reason for our interest in H±
J stems from the following fact. If J admits

compatible symplectic forms, then the set of all such forms, the J-compatible cone,

Kc
J (M), is a (nonempty) open convex cone of H+

J (M) [8]. Thus, it is important to determine

the dimension h+
J of H+

J (M).

In light of the question of Donaldson mentioned in the Introduction, it is also

interesting to obtain information on the dimension h+
J in the case when J is just tamed

by symplectic forms.

It was shown in [8] that an integrable J admits compatible Kähler structures if

and only if it admits tamed symplectic forms. Thus, we can state (29) in this context as

follows:

h+
J =

⎧⎨
⎩b− + 1 if J is tamed and integrable,

b− if J is nontamed and integrable.
(32)
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3.1 A general estimate

When J admits a compatible symplectic form, we have the following easy improvement

of (31).

Proposition 3.1. If J is almost Kähler, then

h+
J ≥ b− + 1, h−

J ≤ b+ − 1. (33)

Actually, (33) can be obtained in a slightly more general setting from the following

lemma.

Lemma 3.2. Suppose (M, g, J, ω) is a compact four-dimensional almost Hermitian mani-

fold. Assume that the harmonic part ωh of the Hodge decomposition of ω is not identically

zero. Then (33) holds.

Proof. Let ω = ωh + dθ + δ� be the Hodge decomposition of ω. From Lemma 2.4,

ω + 2(dθ )− = ωh + 2dθ is a closed J-invariant 2-form. By assumption, it represents a

nontrivial cohomology class in H+
g ∩ H+

J and the estimates follow. �

Of course, if (M, g, J, ω) is almost Kähler, ω = ωh, so Proposition 3.1 is obvious.

More interestingly, Lemma 3.2 implies that the estimates (33) hold for tamed J’s as well.

Theorem 3.3. Suppose J is tamed by a symplectic form ω. Then the estimates (33) still

hold.

Proof. Write

ω = ω′ + ω′′ (34)

with ω′ ∈ �+
J and ω′′ ∈ �−

J . Explicitly,

ω′(v, w) = 1

2
ω(v, w) + 1

2
ω(Jv, Jw). (35)

Then ω′ is compatible with J and nondegenerate, thus it determines a Riemannian

metric g. From the pair (ω, J), we actually get a conformal class of metrics, these for which

�+
g = Span{ω, �−

J }. The metric we fixed is singled out by imposing that |ω′|2 = 2.

We show that Lemma 3.2 can be applied to the almost Hermitian structure

(g, J, ω′). It is enough to show that the harmonic part ω′
h is not identically zero. This
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is true because the following cup product is nonzero:

[ω′
h] ∪ [ω] =

∫
M

ω′
h ∧ ω =

∫
M

(ω′
h + 2dθ ) ∧ ω =

=
∫

M
(ω′ + 2(dθ )−g ) ∧ (ω′ + ω′′) =

∫
M

ω′ ∧ ω′ �= 0. �

The following corollary is an immediate consequence.

Corollary 3.4. If b+ = 1 and J is tamed, then

h+
J = 1 + b− = b2, h−

J = b+ − 1 = 0. (36)

Remark 3.5. Lemma 3.2 can also be applied to show that if b+ ≥ 1, then the estimates

(33) even hold for generic nontamed almost complex structures J (but not all in view

of (32)).

It has been shown in [10] that nontamed almost complex structures exist in any

path-connected component of almost complex structures.

3.2 A formulation of Donaldson’s question

We end this section by giving an equivalent formulation of Question 1.1. Suppose J̃ is

an almost complex structure that is tamed by a symplectic form ω on a compact four-

manifold M. As noted in the proof of Theorem 3.3, the pair ( J̃, ω) gives rise to a conformal

class of Riemannian metrics [g], so that �+
[g] = Span{ω, �−

J̃
}. In the proof of Theorem 3.3,

we chose in this conformal class the metric that made ω′, the J̃-invariant part of ω, have

pointwise norm
√

2.

For the comments below, we prefer to use another natural metric in this conformal

class: we choose the metric g so that |ω|2g = 2 pointwise on M. Equivalently, g is chosen so

that g and ω induce an almost Kähler structure (g, J, ω). Certainly, J̃ is also g-compatible,

and let ω̃ be the fundamental 2-form of (g, J̃). Then

ω̃ = fω + γ , with γ ∈ �−
J , f ∈ C ∞(M) so that 2 f2 + |γ |2 = 2. (37)

Since J̃ is tamed by ω, the function f is strictly positive on M. Thus, we can think that J̃

is induced by the metric g and the 2-form ω + 1
f γ , up to conformal rescaling by f .

Conversely, let (M4, g, J, ω) be an almost Kähler manifold and let α ∈ �−
J . Denote

ω̃α = ω + α. This is a nondegenerate, g selfdual form, so (up to a conformal normalization)
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it induces another g-compatible almost complex structure which we denote J̃α. It is clear

that J̃α is tamed by ω.

Donaldson’s Question 1.1 is equivalent to the following question.

Question 3.6. Is it true that for any almost Kähler manifold (M4, g, J, ω) and any α ∈ �−
J ,

the almost complex structure J̃α is compatible with a symplectic form?

Using this setup and Lemma 2.4, we obtain the following partial result.

Proposition 3.7. With the notations above, if the 2-form α satisfies the pointwise

condition

2 + |α|2 − 4|(αexact)−g |2 > 0, (38)

then J̃α is compatible with a symplectic form.

Proof. We just apply Lemma 2.4 to ω̃α = ω + α. The form

ω̃α + 2
(
ω̃exact

α

)−
g = ω + α + 2(αexact)−g

is closed and J̃α-invariant. Condition (38) is equivalent to this form being pointwise

positive definite. �

Remark 3.8. When α is closed (hence harmonic), condition (38) is trivially satisfied. In

this case, ω̃α is itself a symplectic form. Proposition 3.7 basically says that if α is not too

far from being closed, then J̃α is compatible with a symplectic form. The result can be

seen in relation with the openness result of Donaldson [4].

If α does not satisfy (38), Lemma 2.4 may still help in the search for a symplectic

form compatible with J̃α. Let (M4, g, J, ω) be the fixed almost Kähler structure. Note that

by (7) any J̃α-invariant form �α can be written as

�α = fω̃α + θ , with f ∈ C ∞(M) and θ ∈ �−
g .

Applying Lemma 2.4 to fω̃α, we get that �α is also closed if and only if θ̃ =
θ − 2(( fω̃α)exact)−g is closed, hence harmonic. Thus, a potential symplectic form �α which

is J̃α-compatible must be of the type

�α = fω̃α + 2(( fω̃α)exact)−g + θ̃ , with f ∈ C ∞(M) and θ̃ ∈ H−
g .
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Now the question becomes how should one choose f ∈ C ∞(M) and θ̃ ∈ H−
g to sat-

isfy �2
α > 0 everywhere on M.
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