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We classify, up to a local isometry, all non-Kahler aimost Kahler 4-manifolds for which the
fundamental 2-form is an eigenform of the Weyl tensor, and whose Ricci tensor is invariant with
respect to the almost complex structure. Equivalently, such almost Kahler 4-manifolds satisfy the
third curvature condition of A. Gray. We use our local classification to show that, in the compact
case, the third curvature condition of Gray is equivalent to the integrability of the corresponding
almost complex structure.
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1. Introduction

Let (M, £2) be a symplectic manifold of dimension 2n. An almost complex
structure J is called compatible with the symplectic form £2, if there exists a
Riemannian metric g such that

In this case, the metric g is aso caled compatible with §2, while the triple
(g, J, 2) isreferred to as an almost Kahler structure on M. If, additionally, the
compatible almost complex structure J isintegrable, then (g, J, £2) isaKahler
structureon M. Almost Kahler manifoldsfor which thea most complex structure
J isnot integrable will be called strictly almost Kahler.
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Gromov's theory of pseudo-holomorphic curves [27], Taubes characteri-
zation of Seiberg-Witten invariants of symplectic 4-manifolds [45,46] and the
recent works of Donaldson [17,18] conclusively situated the study of (strictly)
amost Kahler manifoldsinto the mathematical main-stream. A very recent work
of LeBrun[38], for instance, inspired by some aspects of Taubes' construction of
solutions of the Seiberg-Witten equations on symplectic 4-manifolds, relatesthe
existence of strictly almost Kahler 4-manifolds having particular properties of
the curvature with some fundamental problems in Riemannian Geometry, such
asthe existence and the uniqueness of Einstein metrics, or of metrics minimizing
volume among all Riemannian metrics satisfying point-wise lower bounds on
sectional curvatures.

Despite the now compelling appeal of the “Riemannian” aspect of almost
Kahler geometry, the subject suffered for a long time from a genuine lack of
interesting examples. For instance, an old still open conjecture of Goldberg [23]
affirms that there are no Einstein, strictly almost Kahler metrics on a compact
symplectic manifold. K. Sekigawa proved [44] that the conjecture istrue if the
scalar curvatureisnon-negative. The case of negative scalar curvatureisstill wide
open, despite of the recent discovery of complete Einstein strictly almost Kahler
manifolds of any dimension 2n > 6[6], and of (local) Ricci-flat strictly almost
Kahler metrics of dimension four [4,9,41]. Indeed, in addition to some subtle
topological obstructionsin dimension four [32,36-38], it turns out that thereis
anumber of (rather not well understood yet) local obstructions to the existence
of Einstein strictly almost Kahler metrics compatible with a given symplectic
form[2]. Further progress on the Goldberg conjecture seemsto hinge on a better
understanding of these obstructions.

Classically, on a compact manifold M, the Einstein condition appears as the
Euler-Lagrange equation of the Hilbert functional S, the total scalar curvature,
acting on the space of all Riemannian metricson M of agiven volume. A “sym-
plectic” setting of thisvariational problem wasfirst considered by Blair and lanus
[13]: let (M, £2) be a compact symplectic manifold and restrict the functional
Sto the space of £2-compatible Riemannian metrics, then the critical points are
the amost Kahler metrics (g, J, £2) whose Ricci tensor Ric is J-invariant, i.e.
satisfies:

Ric(J-, J-) = Ric(., -). D

The Euler-Lagrange equation (1) is a weakening of both the Einstein and the
Kahler conditions. Furthermore, Blair [12] observed that for any almost Kahler
metric (g, J) thefollowing relation holds:

1 4

=~ | IVJPdp +S(g) =

3 | 19t s = o

where V isthe Riemannian connection of g, | - | isthe point-wise norm induced
by g,andc; anddu = n—ll.QA” are respectively the first Chern class and the the

(c1- [R21" Dy (M),
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volume form of (M, £2). Note that the right hand-side of the above equality is
a symplectic invariant (hence is independent of the choice of a particular $2-
compatible metric); thus the £2-compatible almost Kahler structures satisfying
(1) are also the critical points of the Energy functional, which acts on the space
of £2-compatible amost complex structures by

EWJ) = / IV J|%du.
M

From thispoint of view, critical almost Kahler metrics have been recently studied
in [34]. Clearly, the functiona E (resp. S) is bounded from below (resp. from
above), the Kahler metrics being minima of E (resp. maxima of S). However,
a direct variational approach of finding extremal metrics for these functionals
seems not to be easily applicable asit may happen that the infimum of E be zero,
although M does not carry Kahler structures at al (see [34]). In fact, apart from
the explicit compact examplesof [1,16] (which, multiplied by Kéhler manifolds,
provide examples of any dimension 2»n > 6), amost nothing seemsto be known
in general about existence of compact strictly aimost Kahler metrics satisfying
(). In particular, no such example is yet known on a compact symplectic 4-
manifold.

One reason for which some technical difficulties appear in applying global
methodsis perhaps hidden in the fact that even locally the equation (1) isdifficult
to be solved. Indeed, it consists of a system of PDE’s for a compatible metric
with £2, which does not satisfy the Cartan test [2]. One finds instead a number
of nontrivia relations between higher jets of J and the curvature of g. On a
compact manifold precisely these relations are at the origin of the integrability
results obtained in [2,5,9,20,44]. The few known (local) examples appear, in
fact, as abyproduct of additional geometric structure which makes the study of
the Euler-Lagrange equation (1) more tractable.

The additional structure relevant to this paper comes as an extra-assumption
imposed on the curvature tensor of the almost Kéhler 4-manifold, namely

W(R) =v$, )

where W istheWeyl tensor of g, viewed asasymmetric tracel ess endomorphism
acting on the space of 2-forms; thus, equation (2) is equivalent to £2 being an
eigenform of the Weyl tensor, in which case the eigenfunction v is smooth and
equal, up to afactor 1/6, to the so-called conformal scalar curvature « of (g, J)
(see Section 2.3 for a precise definition).

The condition (2) in its own right appears to be natural in the context of
four dimensional almost Kahler geometry. Indeed, motivated by harmonic maps
theory, C. Wood [48] showed that an almost Kahler 4-manifold (M, g, J, £2)
satisfies (2) if and only if J isacritical point of the energy functiona E, but
under variationsthrough all almost complex structures compatible with the given
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metric g; for thisreason such almost complex structureswere called harmonicin
[48]. Furthermore, almost Kahler metrics saturating the new curvature estimates
of [38] must all satisfy (2).

Let usfinally mention that each of the conditions (1) and (2) corresponds to
the vanishing of a certain irreducible component of the curvature R under the
action of U (2) on the space of algebraic curvature tensors [47]. Taken together,
(1) & (2) are equivaent to the more familiar third curvature condition of Gray
(see[26]):

Rxyzuv = Ryxyviziv- ©)

Evidently, the curvature of a Kahler manifold satisfies (3), hence any of the
conditions (1) and (2).

In[3], wehaveconstructed an explicit family of strictly almost Kahler metrics
that all satisfy the third Gray condition (3). The main purpose of this paper isto
closethecircle of ideasfrom our previouswork [3], by showing that, conversely,
any strictly ailmost Kahler 4-manifold which satisfies (3) islocally modeled by
ametric in this family:

Theorem 1. Let (X, g5, £25) be an oriented Riemann surface with metric gx
and volume form 25, and let 1 = w + iv be a non-constant holomorphic
function on X', whose real part w is everywhere positive. On the product of X
with R? = {(z, 1)} consider the symplectic form

and the compatible Riemannian metric

1
g=gs +wdz® + —(dt + vdz)®?; (5)

Then,

(i) (g, £2) defines a strictly almost Kéhler structure whose curvature satisfies
the third Gray condition (3).

(if) For any connected strictly almost Kahler 4-manifold (M, g, £2) whose cur-
vature satisfies (3) there exists an open dense subset U with the following
property: in a neighborhood of any point of U, (g, £2) is homothetic to an
almost Kahler structure given by (4-5).

This local classification of strictly amost Kahler 4-manifolds satisfying (3)
includes as particular cases some previously known results from [3] and [9].
Indeed, the Einstein metrics in our family correspond to the case when (X, gx)
is a flat surface so that g is a Gibbons-Hawking metric [22] with respect to
a trandation-invariant harmonic function; we get precisely the selfdual Ricci-
flat strictly amost Kahler examples of [9,41,43]. Furthermore, if we consider
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the half-plane realization of the hyperbolic space (H?, g = M) and take
the holomorphic function 1 = x + iy, then (4-5) gives the four dimensional
proper 3-symmetric space (Isom(E?) - Sol»)/SO(2) (see [25,33]), which can
be characterized as the only strictly amost Kahler 4-manifold whose curvature
tensor preserves the type decomposition of complex 2-forms [3] (a condition
known as the second curvature condition of Gray [26]).

To prove Theorem 1 we use local methods which have originated from [9],
and have been further developed in [3]. However, the more genera result of the
current paper requirestwo main new ingredients. Thefirst comesintheform of a
Unique Continuation Principle for the Nijenhuis tensor, N, of an amost Kahler
4-manifold satisfying (3) (Proposition 1), which allows us to realize the dense
set U in Theorem 1 as the subset of points where N does not vanish. We then
consider on U the orthogonal splitting of the tangent bundle T M into the sum of
two linear complex sub-bundles, D and D+, where D = {TM > X : VxJ = 0}
is the so-called Kahler nullity of J, while its orthogonal complement, D+, is
identified with the canonical bundle K, of J (see Sect. 2.2). This alows us to
define another almost complex structure, 7, whichisequal to J when acting on
D, but to —J on D+. The aimost complex structure I is compatible with g, and
induces the opposite orientation on M. Motivated by this fact, we shall often
refer to (g, 1) as the opposite amost Hermitian structure associated to (g, J).
The second new ingredient, which isthe heart of the proof of the above Theorem
1, consists of showing that for any strictly almost Kahler metric (g, J) satisfying
(3), the opposite almost Hermitian structure (g, 1) is, in fact, aKahler structure
(Proposition 2). Oncethisisachieved, Theorem 1 followsby [3, Theorem 2] (see
also Theorem 3 below).

Note that the metric (5) of Theorem 1 isendowed with an R2-isometric action
which is surface-orthogonal and preserves the symplectic form (4); such an
action cannot be extended to a Hamiltonian toric action on acompact symplectic
4-manifold. Oneisthen lead to suspect that there will be no compact examples
of strictly amost Kahler 4-manifolds satisfying (3) (although there are complete
ones [3]). We confirm this with the following integrability theorem, which is a
direct generalization of results of [5] and [9]:

Theorem 2. A compact almost Kéhler 4-manifold whose curvature satisfies the
third Gray condition (3) is necessarily Kahler .

The proof of Theorem 2 involvesthelocal result of Theorem 1 and the unique
continuation property established in Proposition 1, together with some global
arguments relying on the Enriques-Kodaira classification of compact complex
surfaces and structure results for non-singular holomorphic foliations [15,24]
and authomorphism groups [39] of ruled surfaces.

This article can be seen as a natural continuation (and conclusion) of our
previouswork [3]. The authors have nonethel ess endeavored to make the current
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paper as self-contained as possible. The necessary background of almost Kahler
geometry and aquick review of previousresultsisdisplayed in Sections2 and 3
below. The proofs of Theorems 1 and 2 are then presented in Sections 4 and 5.

2. Elements of almost Kahler geometry
2.1. Type-decompositions of forms and vectors

Throughout the paper, (M, g, J, §£2) will denote an amost Kahler manifold
of (real) dimension 4, where: g is a Riemannian metric, J is a g-orthogonal
amost-complex structure —i.e. (M, g, J) is an amost Hermitian manifold —
and 22(-, -) = g(J-, -) isthe fundamental 2-form of (g, J), which is closed, and
therefore (M, §2) is asymplectic manifold.

We denote by: T M the (real) tangent bundle of M; T*M the (real) cotangent
bundle; A"M,r = 1, ..., 4 the bundle of rea r-forms; (-, -) the inner product
induced by g on these bundles (or on their tensor products), with the following
conventions for the wedge product and for the inner product on forms:

(a1 Ao Aap) g, x, = det((e; (X)),

yeeey

(a1 Ao A, LA A By = det((a, B5),

where det denotes the determinant.

Using the metric, we shall implicitly identify vectors and covectors and,
accordingly, a2-form ¢ with the corresponding skew-symmetric endomorphism
of the tangent bundle T M, by putting: (¢(X),Y) = ¢(X,Y) for any vector
fidds X, Y.Also, if ¢, ¥ € T*M®2, by ¢ o y we understand the endomorphism
of T M obtained by the composition of the endomorphisms corresponding to the
two tensors.

Thealmost-complex structure J givesriseto atype decomposition of complex
vectors and forms. By convention, J acts on the cotangent bundle 7*M by
(Ja)x = —ayx, sothat J commutes with the Riemannian duality between T M
and T* M. Weshall usethe standard decomposition of the complexified cotangent
bundle

T*M ® C = A*°M @ A% M,

given by the (+i)-eigenspaces of J, the type decomposition of complex 2-forms
A’M @ C =AM @ A*°M @ A%2Mm,
and the type decomposition of symmetric (complex) bilinear forms
M ® C = S"'M @& S*°M & S*°M.

Besides the type decomposition of complex forms, we shall also consider
the splitting of real 2-formsinto J-invariant and J-anti-invariant ones, for any
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real section of A%M (resp. of S?M), we shall use the super-script ' to denote the
projection to the real sub-bundie Ag*M (resp. Sz*M) of J-invariant 2-forms
(resp. symmetric 2-tensors), while the super-script ” stands for the projection to
the bundle [[A%2MT] (resp. [S®2MT)) of J-anti-invariant ones; here and hence-
forth [[ - ]| denotes the real vector bundle underlying a given complex bundle.
Thus, for any section vy of A2M (resp. of S?M), we have the orthogonal splitting
Y =y + ¢, where

1 1
V() = 5(1//(~, V+ Y- J)) and YUC, ) = E(l/f(w )=y J).
Wefinally define the U (2)-decomposition (with respect to J) of real 2-forms
A’M =R -2 @ A5'M & [A%2M]), (6)

where Ag'M isthe sub-bundle of the primitive (1,1)-forms, i.e. the J-invariant
2-forms which are point-wise orthogona to 2. The above splitting fits in with
the well known S O (4)-decomposition of A%M

AM=ATM®A M

into the sub-bundles A*M of selfdual (resp. anti-selfdual) forms. Indeed, we
have

ATM =R-2 & [A%2M]], A~M = A5'M. 7

Note that S5 M can be identified with A5 M viathe complex structure J: for
any S e Sg'M,

So)(,):=80-,")

is the corresponding element of Az*M. Also, the real bundle [A%2M]] (resp.
[[5%2MT]) inherits a canonical complex structure, still denoted by J, which is
given by

JY)(X,Y) = -y (JX,Y), Yy € [A%’M]),

sothat ([ A%?MT], J) becomesisomorphicto theanti-canonical bundle K ;* (M)
of M. We adopt asimilar definition for the action of J on [S®?M7]]. Notice that,
using the metric g, [S®2MT] can be also viewed as the bundle of symmetric,
J-anti-commuting endomorphisms of 7M.
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2.2. The U (2)-decomposition of the curvature

The Riemannian curvature R is defined by Rx yZ = (Vix.y; — [Vx, V¥ Z,
whereV istheLevi-Civitaconnection of g. Usingthemetric, it will beconsidered
as a section of the bundle S2(A2M) of symmetric endomorphisms of A%2M, or
of the tensor product A°M ® A2M, depending on the context. The conformal
part of R, the Weyl tensor W, commutes with the Hodge operator * acting on 2-
forms and, accordingly, splitsas W = W+ + W—, where W= = %(W + Wox).
W is caled the selfdual Weyl tensor; it acts trivially on A~M and will be
considered in the sequel as afield of (symmetric, trace-free) endomorphisms of
At M. Similarly, the anti-selfdual Weyl tensor, W, will be considered asafield
of endomorphisms of A~ M.

The Ricci tensor, Ric, isthe symmetric bilinear form defined by Ric(X, Y) =
tr{Z — Rx Y} aternatively, Ric(X,Y) = Z?:MRx,ei Y, ¢;) for any g-ortho-
normal basis {e;}. Wethen have Ric = 7 g + Rico, wheres isthe scalar curvature
(that is, the trace of Ric with respect to g) and Ricg isthe trace-free Ricci tensor.
The latter can be made into a section of S2(A2M), then denoted by Rico, by
putting ﬁi\cg(x AY) = Ricg(X) A Y + X A Ricg(Y); equivalently, for any
section ¢ of A2M we have

Rico(¢) = Rico 0 ¢ + ¢ o Ricy.

It is readily checked that Rico satisfies the first Bianchi identity, i.e. Rico is a
tensor of the same kind as R itself, aswell as W+ and W—; moreover, Ric, anti-
commutes with x, so that it can be viewed as a field of homomorphisms from
ATM into A~ M, orfrom A~ M into AT M (adjoint to each other); we eventually
get the well-known Singer-Thorpe decomposition of R, seee.g. [11]:

W*+ S1daru| GRICOI M
R =
(%ﬁi\cg)mﬂw W=+ 5 1da-u

In the presence of a g-orthogonal almost complex structure J, which induces
the chosen orientation of M, the above SO (4)-decomposition can be further
refined to get seven irreducible U (2)-invariant pieces [47]. To see this, we first
decompose the traceless Ricci tensor into its J-invariant and J-anti-invariant
parts, Ric, and Ric = Ric”, which gives rise to the decomposition

R = (Rig [Ri)-
We shall denote by p the Ricci form of (M, g, J), which is the (1, 1)-form

corresponding to Ric’ via J (wethushave p = Ric' o J), and by po = Ricgo J
its primitive part.
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Furthermore, with respect to (7), W* decomposes as
6 Wy

wt =

where:

e the smooth function « isthe so called conformal scalar curvature of (g, J),
defined by k = 3(WT(£2), £2); thus, « is determined by the scale action of
W on any of the two factor of (7).

e the component W, is the piece of W that interchanges the two factors of
(7); it thus can be seen as a section of K,‘l(M) by the following equality

W= (e teen) ®

where p/ is the J-anti-invariant component of the so-called star-Ricci form
o« = R(£2) of (g, J); recal that the star-Ricci tensor Ric* is defined by
Ric* (-, ) = —p«(J-, -); in particular, p/ = 0if and only if W*(£2) = §52;

e the component W can be viewed as a section of K ;Z(M ); with respect to
any (local) section ¢ of [A%2MT], it can be written as

A
Wi =009 -Jo@Isl+ 0@ I +Is84L  (9)

» and n being (locally defined) smooth functions; equivalently, W is the
component of W that belongs to the bundle of symmetric endomorphisms
of [A%2M1] which anti-commute with J.

We thus get the U (2)-splitting of the Riemannian curvature of an almost Hermi-
tian 4-manifold [47]:

R:lizld‘AzM+Wf+W{+W§+§i\c/g+§Eg+Wi (10)
where W, denotes the scalar component of W, specifically given by

K K
Wi = 5282 - ldaw. (11)

The following immediate application of the decomposition (10) provides
alternative definitions (in dimension 4) for the third curvature condition of Gray

3):

Lemma 1. [47] For an almost Hermitian 4-manifold (M, g, J) the following
conditions are equivalent:

() Ri¢’=0andp/ =0.
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(i) Ric"=0and W(£2) = §£2.

(iii) Ric* — Ric= %g.

(V) Rxyzu = Ryxyviziv-

(v) R preserves the type decomposition (with respect to J) of real 2-forms.

2.3. The Nijenhuistensor and the curvature

A central object in our study is the Nijenhuis tensor (or complex torsion) of an
almost complex structure J, defined by

Nxy=[JX,JY]|=-JJX,Y]-JI[X,JY]-[X,Y].

Thus, N isa2-formwithvaluesin T M, which by Newlander-Nirenberg theorem
[40] vanishesif and only if J isintegrable.

Alternatively, the Nijenhuis tensor can be viewed as a map from AXM to
A%2M in the following manner: given a complex (1,0)-form , we define by
3y and 31 the projectors of dyr to A%2°M and A% M, respectively. In general,
d # 3 + 9, asdy can also have acomponent of type (0,2), which we denote by
N(@); writing ¥ = @ + i Jo where« isareal 1-form, one calculates

1 1
NW)xy = 5a(Nxy) = 20 (Nxy), VX, ¥ € T*M.
Equivalently, for every real 1-form o we have
1
@)y y = (@) )xy + 5Ta(Nxy), (12

where d’ = i(d — 9); thus, d”’ acts on real functionsby d’ f = Jdf, on real
1-formsby (d’a)x.y = —d(Ja),x. v, €tc. Observe that % = 0 does not imply
dd’ +d’d = 0, unless N = 0. For example, using (12) one obtains on functions

dd’ +d’a)f =2dd’ f)' = @ fnc.,). (13)

Inparticular, dd” f isnot,ingeneral,a(1, 1)-form; however, for analmost K ahler
manifold its projection to the §2-factor of (6) isasecond order linear differential
operator which, up to a sign, is nothing else than the Riemannian Laplacian of
(M, g):

Af = —(dd’ f, 2). (14)

For an amost Kahler manifold (M, g, J, §2), thevanishing of N isequivalent
to £2 being parallel with respect tothe L evi-Civitaconnection V of g; specifically,
for any almost Kahler manifolds the following identity holds (cf. e.g. [30]):

1
(Vx$)(. ) = S X NC ) (15
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Using the above relation, we shall often think of N asa T*M-valued 2-form, or
asa A?M-vaued 1-form, by tacitly identifying N with V2. Further, since £2 is
closedand N isa J-anti-invariant 2-form with valuesin T M, one easily deduces
that V2 is, in fact, a section of the vector bundle [A%*M ® A%2MT], i.e. the
following relation holds:

VixJ = —J(VxJ), YX € TM. (16)

Notethat, in four dimensions, any section of [[ A%1M ® A%?M ]| hasanon-trivial
kernel; then, at any point x € M, we define the sub-space

Dy ={X € IxM : (VxJ), =0},

which we call Kahler nullity of (g, J); thus, dimg(D) = 4 or 2, depending on
whether or not N vanishes at the given point. Assuming that N # 0, we let D+
be the orthogonal complement of D in T M. Relation (16) identifiesthe complex
line bundle D+ with the canonical bundle K ; (M) = A%9M; consequently, we
have the following relations for the corresponding first Chern classes:

ci(DY) = —ci(TM) = —c1(J) , c1(D) = ci(TM) — c1(DF) = 2c1(J).

On the open subset of points where N # O, we shall also consider the opposite
almost complex structure I, whichisequal to J on D, butto —J on D*; clearly
I is compatible with the metric but yields the opposite orientation to the one of
(M, J). We mention below the following observation due to J. Armstrong [8]
and C. LeBrun [38]:

Lemma?2. Let (M, g, J, £2) be an aimost-Kahler 4-manifold for which the Ni-
jenhuis tensor nowhere vanishes. Then, the Chern classes of the almost com+
plex structures J and I satisfy ¢;(I) = 3cy(J); if, moreover, M is compact,
then the Euler characteristic x (M) and signature o (M) of M are related by
5x(M) = —60 (M).

Proof. We clearly have
c1(I) = e1(D) = ci(DF) = 3e1(J).

By Wu's formulawe know that c2(M, J) = 2x (M) + 30 (M) and c2(M, I) =
2x (M) — 30 (M), so that we get —9(2x (M) + 30 (M)) = 2x(M) — 30 (M),
the claim follows. O

For aKahler structure (g, J, £2) someof the curvature componentsdefinedin
Section 2.2 identically vanish: indeed, in thiscase Ric’ = 0, W,” =0, W =0
and the scalar function « isnothing elsethan the scalar curvature s. Thissuggests
that for an ailmost Kahler structure those components depend directly on the
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Nijenhuis tensor (and its covariant derivative). To see this, consider the Ricci
identity for £2:

(Viy — Vi) (2)=1[J, Rxyl. (17)
where Ry y is viewed as an endomorphism of TM and [, -] denotes the com-
mutator. A contraction of thisrelation leads to

4
— > (V2 ,2)(ei. X) = Ric(J X, Z) — Ric*(J X, Z). (18)
i=1

Symmetrising (18) in X and Z, one obtains the relation between Ric” and the
Nijenhuis tensor:

. 13
R xz =5 D ((V2 200 X) + (V2 x)(ei. 2)).
i=1

Anti-symmetrising (18) in X and Z and using d§2 = 0, one gets

1
SVIVR =p.—p, (19)

which can be recognized as being nothing but the usual Weitzenbock formula
[11] applied to the harmonic 2-form £2. From (19) we also get immediately

2p; = (V*V$2)", po= (p,)oand

2+ s

s* —s =|VR2|%, where s* = 3

(20)

isthe trace of the star-Ricci tensor Ric*.

Finally, the component W™ is determined by the [[ A%2M]-component of the
relation (17).

AsV 2 isasection of thebundle[[ A% M ® A%2 M), itwill bevery convenient
at timesto expressthe higher jetsof 2 intermsof a(local) section¢ e [A%2M ]|
of square-norm 2. Observe that we have an S*-freedom for the choice of ¢ and,
for this reason, such aform ¢ will be called a gauge.

Thus, assuming that we have made a choice for the gauge ¢, we can write:

VR2=a®¢p—Ja® Jp. (21)

The gauge-dependent 1-form « is dual to a vector field in D+ and satisfies
V2|2 = 4|a|?, which shows that |a|? is a gauge-independent quantity. As

1 1 1 . ; . o
{E‘Q’ ﬁqb, \—@pr} is an orthonormal basis of A™M, the covariant derivatives
of ¢ and J¢ are given by

Vop=-a@R2+bRJp; VIip=Ja®R2-b®¢, (22)
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for some gauge-dependent 1-form b. In fact, if we change the gauge by
¢’ = (cosh)¢ + (Sn)J ¢,
the corresponding 1-forms change as follows
a’ = (cos@)a — (sinB)Ja; b’ =b+d6.
From (21) and (22), we get
V3022 =da—Janb)®@p — (d(Ja) +a Ab)® Jo,
so, the Ricci identity for £2, (17), can be rewritten as
da—JaAb=—R(J¢); d(Ja)+a nb=—R(¢). (23)
From the Ricci identity for ¢
(Viy = Vi0@) =16, Rxyl,
after using (21) and (22), one gets the gauge independent relation
db=aAnJa—R(2)=aAJa— p,. (24)
Note that the closed, gauge independent 2-form
y;=—db=R(2)—anJa (25)

is a deRham representative of 21 (M, J), caculated with respect to the first
canonical connection of (M, g, J)

1
V)l(Y = VxY — EJ(VXJ)(Y),

see e.g. [21]. We shall refer to y; asthe canonical Chern formof (M, g, J).

2.4, The differential Bianchi identity for almost Kahler 4-manifolds

For a Riemannian 4-manifold (M, g) the differential Bianchi identity can be
written as §W = C, where W is the Weyl tensor, C denotes the Cotton-York
tensor of (M, g) and the co-differential § actson W ason a A%M-vaued 2-form.
Recall that C is defined by

Cxyz=—d"h)(X,Y,Z) = =(Vx)(Y, Z) + (Vyh)(X, Z),

where h = %Rico + 2;8 denotes the normalized Ricci tensor and 4V is the
Riemannian differential acting on 7*M valued 1-forms. Both §W and C are
sectionsof thebundle A*M ® A2M and because of the splitting A°M = ATM @
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A~ M, the differential Bianchi identity splitsin two halves, selfdua and anti-
selfdual:

SWH=ct, sw—=cC",
where the +-superscript denotes the selfdual, resp. anti-selfdual component
of the corresponding tensor. We would like to express the above formulae in
terms of the various U (2) curvature components of an almost Kahler 4-manifold

(M, g, J, $2). We start with the Cotton-York tensor C.
Contracting the differential Bianchi identity W = C, we obtain

N
S8(Ricg—-g)=0
(Rico 4g)
andthis, together with thefact that the fundamental form £2 isharmonic, implies:
—5(po — 29) — JS(RIC). (26)
Taking the Hodge star operator of both sides, the above relation is equivalent to
dp = *(JSRiC).
In particular, if Ric” = 0, then p isclosed [19].

For agiven vector field Z, we denote by C the section of A2M, defined by
Cz(X,Y) := C(X,Y, Z), and similarly we define C} and C,,. Denote also by
Ay the A?M-valued 1-form given by

Az = (d"Ric)z +12(dp),

where standsfor interior derivative, and let AZ be the selfdual and anti-selfdual
components of A.

Lemma3. Let (M, g, J, £2) be an almost Kéhler 4-manifold. Then, for any
vector field Z, the Cotton-York tensor C is given by

1 1
2C; =V, 7p0 — Z((d’s)z)sz + V)2 + éds NZ'— Ay (27)
where Z” denotes the g-dual 1-formof Z.

Proof. Sinceh = %Ric — 158, the Cotton-York tensor is written as.

1 , 1 , 1
C; = —=(d"Ri — Z@"Ri —ds A Z". 28
z 2( ic)z 2( |C)z+12 s A (28)



Local models and integrability of almost Kahler 4-manifolds

Taking into account that p(-, -) = Ric (J-, -), we have
(d"Ric)(X,Y, Z) = (VxRic)(Y, Z) — (VyRic)(X, Z)
= @ P)(X. ¥, 92) + (p(Y. (Vx)Z) = p(X. (Vy))2)).
(29)
For the term dY p we have

¥ p)(X, Y, JZ) = (Vxp)(Y, J Z) = (Vyp)(X, ] Z)
=—(Vyzp)(X,Y) + (dp)(X, Y, JZ) (30)
=—=(Vyzp)(X,Y) +1;2(dp)(X, Y).

To refine the last term of (29), note that as an algebraic object, VxJ isa
skew-symmetric endomorphism of T M, associated (by g-duality) to the section
V2 of thebundle [A%2M]]. Thus Vy J anti-commutes with J, and commutes
with any skew-symmetric endomorphism associated to a section of A~ M; in

particular, it commutes with the endomorphism corresponding to o via the
metric (which is still denoted by pp). We thus obtain

p (Y. (VxJ)(Z)) — p(X, (VyI)(Z)) = §(<vy9><x, 17) - (Vx)(Y. I 2))
+ (Vx2)(Y. po(Z)) — (Vy2)(X. po(Z))
= %(vjzm(x, Y) = (Vo) 2)(X. Y),

(31)
where for the last equality we used the closedness of 2.
Substituting (30) and (31) in (29), we get
@ RiC)z = —Vi2p0 — Vo) 2
1 (32)
+ Z((d §)2)82 + 1y7(dp).
From (28) and (32), we obtain relation (27) claimed in the statement. O

Lemmad. Let (M, g, J, £2) be an almost K&hler 4-manifold. Then the differ-
ential Bianchi identitiessW+ = C*, W~ = C~ are equivalent to:

1 1
0=—2(d(c=9))22 + 2(dc =) A Z")" + (80))22 (33)
+%V]ZQ — VPO(Z)Q + VPZ(Z)Q + ijp: + 2(8W3+)Z + A+ N

1
0= v,zpo+6(dmzb)* —28W, — A, . (34)
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Proof. Relation (34) followsfromsW~ = C~ by simply taking the anti-selfdual
component of (27). Similarly, for (33) we take the selfdual component of (27),
but we also use the relations

1 K 1
N g © il by+
BWHz = 8(d K)z82 + 8VJZ.(2+ 12(dK/\Z) , (35)
+ l " 1 1 "
W)z = EVJZ(,O*) + Ev(p*)”(Z)Q + 5(50*)(2)9, (36)
which easily follow from (11) and (8). O

It will be useful to further determine the £2-component and the [[A%2M]-
component of (33) in accordance with the decomposition (7) of AT M. Theseare
given by

Corollary 1. For any almost Kahler 4-manifold the following identities hold:

0= —%(dJ(K — )z + 2((W)z, 2) (37)
+2(80)) 2 — (P, Vi282) + (A%, ) ;

1 " "
0= (=) A 7 + %v,zsz — V)2 +26W5),  (39)

V082 + (Vizpl) + (AD) .

2.5. AWEitzenbock formula and unique continuation of the Nijenhuis tensor

Recall that the weak unique continuation property foramapu : M — E
between connected Riemannian manifolds, M and E, saysthat if u isaconstant
map on an open subset U C M, then u is constant everywhere; for the strong
unique continuation property, the condition that « is constant on an open subset
is replaced with the assumption that at a given point, u has a contact of infinite
order with the constant map (see e.g. [29]).

In this subsection we shall show that the (strong) unique continuation prop-
erty holdsfor the Nijenhuistensor of an almost Kahler 4-manifold which satisfies
certain curvature conditions. In fact, we shall concentrate our attention on V £2,
which isidentified to the Nijenhuistensor via (15). Astypically happensin Rie-
mannian geometry, the unigque continuation property appears as a consequence
of aWeitzenbdck formula. In our case, we shall use a general Weitzenbock for-
mula of Bourguignon [14] applied to V2, seen as a section of the bundle of
A?M-valued 1-forms. Therole of the “constant map” in this setting is played by
the zero section.
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Proposition 1. Let (M, g, J, £2) be an almost Kahler 4-manifold whose curva-
ture satisfies the third Gray condition (3). Then, the following identity holds:

3
V'V(V2) + stg + VRieg(y2 = 0, (39)

In particular, if M is connected, then the (strong) unique continuation property
holds for V£2 (hence for the Nijenhuistensor N aswell).

Proof. We shall in fact establish aformulafor V*V(V £2) on an arbitrary amost
Kahler 4-manifold, and then relation (39) will be an immediate conseguence.
The starting point is the general Weitzenbock formulafor a A2M -valued 1-form
V (e.g. see[14], p.282):

(@ + anV)v)X - (V*vv)X + Vaiox) + (R-V)x.  (40)

In the above formula

¢ dY isthe Riemannian differential acting on A?M-valued k-forms;
o 5V istheformal adjoint of 4"
o the curvature action is given by:

4

(R-V)x =Y [Ryerr Ve,

i=1

where{ey, ..., es} isanorthonormal basisof 7 M, the2-forms Ry ,,, V., arefreely
identified with the corresponding skew-symmetric endomorphism of T M and
[-, -] denotes the commutator. We apply (40) to V = V£2; using (19), (20) and
(17) we get

Y (V) = VIV = 2ps — p) = 20 + & ;S)Q .4
@V (V2)xy = (Vi) — (Vi x2) =[J, Rx.y]. (42)

From (41) we derive immediately
@V8¥(V2)x = 2Vxp] + %d(/c —)x2 + « ;S)VX.Q , (43)

whereas a short computation starting from (42) leads to

67d" (VE))x = —(R - (V)x + (Ve Ry x (U ) + (Ve Ry -, 1))
(44)
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Using the differential Bianchi identity and (32), we get
(Ve Rrx (I )+ (Ve Ry, J)) = @ RIOK (-, ) + (@ RiO)x (- )
= Ax(J-, ) + Ax(, T + 20V (D))
= —2(J (A () + 2V (), )

(45)
From the relations (43-45) and (40), we obtain
V*V(VR) = 2Vp! — 2J(AT) — Vrien 2
1 (k —5)
—2R - (V&) + 2V (2 + :—%d(lc —5)® 2+ > V2.
(46)

It remains to detail the expression of theterm R - (V£2). For this, we shall use
the U (2)-decomposition of the curvature (10) and compute the action of each
component on V2. It is clear that the action of W~ is zero, and for the action

of the component Ric, we will not attempt to do any simplification, asRicj = 0
for almost Kahler 4-manifolds satisfying (3). For the other components though,
from their definitions (see (11), (8), (9)), one computes successively:

s s
<1_2|d\A2M : (V-Q))X = E(VXQ)§

N K
(Wl (V) = E(VX-Q)§

X

1,
= —(Viprx)§2) — E(P*/, Vx$2)82;

)
(Wz+ : (V.Q))
)

(W5 - (V) = (6W)sw, 2)2;

X
RiCy (V) = Vg2 -
Finally, using the relations above, back in (46), we obtain:

3s

Ricg(X)Q - ZVX‘Q

(V*V(V.Q))X - _v
1
+ (50 = 9x = 2A6W)x. 2)) 2
+2(Vxp)" + 2Vpp0) 82

2 —2J(Ay)" - 2(Ricy- (V.Q))X .

(47)
- VRicg (X)

For an amost Kéhler 4-manifold which satisfies the third Gray condition,
the terms in the last two lines of the above equation all vanish, as they contain
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Ric’ and p/, see Lemma 1. In fact, the expression of the second line is also
0, as a consequence of the Bianchi relation (37). Thus, under the assumption
Ric' = 0 & p/ = 0, the general formula (47) reduces to (39); the fact that
the relation (39) implies the (strong) unique continuation property for V2 (and
therefore also for the Nijenhuis tensor N), follows from the classical result of
Aronszajn [7]. O

Remark 1. (i) Notethat solely for the purpose of getting the unique continuation
property for V2, we need not make the effort to compute the action of each of
the curvature components on V §2. Indeed, to apply the result of Aronszajn [7],
it is enough to obtain an estimate of the form

VYR = M(IVVRP + V2P |
and relation (46) already implies such an estimate, once we also note that
2 4
§|d(/< — )| =1d(VRP)| < 2[V(VR)||VR| = §(K —)IV(VL)|.

More generaly, from (47) (or equaly well from (46)), one can deduce that
the (strong) unique continuation property for V2 holds for almost Kahler 4-
manifolds for which two of the three tensors, Ric', p/, and W5 vanish. Indeed,
in the case when p!/ = 0 & W5 = 0, the differential Bianchi identity (38) can
be written as

—(AD) = }(d(/c —OAY +E5V,,02 -V, 0
z _6 4 Jz po(Z)Ré -

Putting the above relation back in (46), one again obtains the needed estimate to
apply [7]. One can proceed similarly inthe case Ric' = 0& W5 = 0. Infact, in
this latter case, employing a different estimate, it was shown in [2] that an even
stronger version of the unique continuation property of V£ holds, namely, if
V £2 vanishes at one point, then it must be identically zero.

(ii) One would expect formula (47) to eventually lead to the integrability
of compact amost Kahler 4-manifolds satisfying certain curvature conditions.
Thisisindeed the case: along these linesit was proved in [20] that on a compact
symplectic 4-manifold there are no critical, strictly aimost Kahler structures of
everywhere non-negative scalar curvature.

3. The examples of almost Kahler 4-manifolds
satisfying the third Gray condition

We give here more details about the explicit construction given in Theorem 1;
the material in this section has appeared in [3].
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Let (X, g5) beany oriented Riemann surfaceand 2 = w + i v be aholomor-
phic function on X', such that w = fRe(h) is a positive (harmonic) function on
X’ We can then locally write the metric g5 as

gr = 'w(dx® + dy®?),

where x, y are (local) isotherm coordinates of (X, g5) and u isafunctionon X.
We consider the metric

1
g = gs + wdz® + =(dt + vdz)®? (48)
w
1
= ¢“w(dx®? + dy®?) + wdz®? + = (dt + vdz)®?,
w

defined on M = ¥ x R?, where (z, t) are the canonical coordinates of R2.
Clearly, K1 = < and K, = 2 aretwo commuting Killing fields, so that g isan
R2-invariant metric compatible with the product structure in the sense of [28].

Asobserved in [35], the metric (48) carries acompatible Kahler structure, 1,
whose fundamental formis

2 =25 +dz A (dt +vdz) = (e"w)dx Ady +dz A dt,

where 2 denotesthe volumeform of (X, g5). Equivalently, I isdefined by its
action on 1-forms:

I(dx) =dy; I(dz) = %(dt + vdz). (49)

Thus, I iscompatible with the product structure aswell, and induces an orienta-
tion on M and on each of the factors X and R?. Besides I, one can consider the
almost complex structure J, which coincides with I on X', but which isequal to
—IonR? ie

J(dx) =dy; J(dz) = —%(dt + vdz). (50)

Thus, J iscompatiblewith g and yieldson M the orientation opposite to the one
induced by I. Furthermore, the fundamental form of J is given by

Q= Qs —dz At +vdz) = 25 — dz Adt,

and is clearly closed, meaning that (g, J) is an amost Kéhler structure. It is
easily seenthat J isintegrable(i.e. (g, J) isKahler) if and only if & is constant
(i.e. g isaproduct metric), apossibility which we excludein what follows below.

An important feature of the construction comes from the following observa-
tion: at any point wheredw # 0O, theKéhler nullity D = {TM > X : VxJ = 0}
of J is atwo dimensional subspace of 7 M, which is tangent to the surface
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X (see[3]); thus, the Kahler structure I and the almost Kahler structure J are
equivalently related by
.]D = ID JDJ_ = _IDJ_.

The amost Kahler structure (g, J, £2) is sufficiently explicit to make it
straightforward, though tedious, to check that its curvature satisfies the third
Gray condition (3); see our previous paper [3] for detailed calculations. But
the heart of [3] consists of the following abstract characterization of the almost
Kahler structures given by (48-50):

Theorem 3. [3, Theorem 2] Let (M, g, J, £2) be a strictly almost Kahler 4-
manifold whose curvature satisfies (3). At each point x € M wherethe Nijenhuis
tensor of J does not vanish, consider the orthogonal almost complex structure 7
whichisequal to J ontheKahler nullity D, ¢ T, M, butto —J ontheorthogonal
complement of D,. If we supposethat (g, 1) isKahler onan open subset U, then
for every sufficiently small neighborhood of x € U, (g, J, I) isgiven by (48-50),
up to a homothety.

The key point for obtaining the above result in [3] was to show that the
distribution D+ is (locally) spanned by commuting hamiltonian Killing fields, a
subject to astraightforward verification of theintegrability condition of arelevant
Frobenius system; then, according to [35], the Kahler metric (g, 7) can be put
(locally) in the form (48-49) and Theorem 3 follows easily.

On the other hand, it was shown in [9] that when (g, J) is an Einstein,
strictly almost Kahler structure satisfying (3), (g, 1) is necessarily Kahler ; the
same was later established for strictly amost Kahler 4-manifolds satisfying the
second curvature condition of Gray (see [3]). In the next section we generalize
these results.

4. Proof of Theorem 1

Thefollowing proposition, which via Proposition 1 and Theorem 3 implies The-
orem 1, isthe technical core of the present paper.

Proposition 2. Let (M, g, J, £2) bea strictly almost Kahler 4-manifold satisfy-
ing the third Gray condition (3) and let (g, I) be the opposite almost Hermitian
structure associated to (g, J) asin Theorem 3. Then, ontheopenset U C M,
where |VJ| # 0, (g, I) isaKahler structure.

There are three main steps in the proof, corresponding roughly to Lemmas 5, 6
and 7 below. InLemmab, wefirst establish that under thethird Gray condition (3)
for (g, J), the opposite almost Hermitian structure (g, I) isalmost Kahler and
wespecificaly find, in accordancewith Lemma2, theexact form representing the
differencey; — 3y;, wherey, and y, arethe canonical Chernformsof (g, J) and
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(g, I) respectively (see Section 2.3). Under the second Gray condition studied
in[3], or with the Einstein assumption madein [9], Lemma5 it was shown that
(g, I) is Kéhler. Assuming the (weaker) third Gray condition only, the same
conclusion is still true, but not so immediate. Theidea of the proof isto proceed
by contradiction, thus assuming that (g, I) isnot Kahler and to try to iterate the
construction. Thisis somehow complicated by the fact that, a priori, (g, I) does
not satisfy the third Gray condition (3). Nevertheless, in Lemma 6 we show that
the curvature hasthe necessary featuresto allow theiteration of the construction.
The last step is essentially done in Lemma 7: We consider (g, J), the opposite
almost Hermitian structure associated to (g, ) and, analogously to Lemma 5,
we get an explicit expression for the exact form representing y; — 3y;, where y;
denotes the canonical Chern formof (g, J). But oneimmediately noticesthat, in
view of Lemma 5, the “opposite of the opposite” almost complex structure J is
nothing else than —J, hence we also have y; = —y;. Therefore, the expression
for y; — 3y, obtained in Lemma 7 provides another relation between y, and y;,
different than the one obtained in Lemmab (see also Lemma2). The combination
of the two leads to the desired contradiction.

Thisisthe outline of the proof of Proposition 2. Before we proceed to detail
each of the three mentioned steps, let usfirst recall some notations from Section
2 and introduce some new ones, for convenience. As mentioned in Section 2.3, it
isuseful to make computations using agauge ¢; recall that ¢ isalocal section of
norm +/2 of the bundle [[ A%2M]. We thus choose an arbitrary gauge ¢ and fix
it. By formulae (21) and (22), we define the local 1-formsa and b corresponding
to ¢. We shall denote the (local) endomorphisms of 7'M induced by ¢ and J¢
by J1 and, respectively, J,; notethat thetriple (/, J1, J» = J J1) isaloca amost
quaternionic structure on the manifold. We a so make the convention to denote
atensor (or form) defined by the opposite almost complex structure (g, 1) with
the same symbol as the corresponding one defined by (g, J), but with a “bar”
sign on top. Thus, for instance, the fundamental form of (g, 1) isdenoted by £2,
the Ricci form of (g, I) by p, etc.

Because of the existence of the opposite almost Hermitian structure (g, 1),
the decomposition (6) of the bundle of 2-forms further refines to:

APM=R-2&[AY*MI &R -2 a[AYM]),

where [ A9?M1], [[A%?M]] denote the underlying real bundles of the anti-cano-
nical bundlesof (g, J), (g, I), respectively. We shall keep the convention made
earlier to use the superscripts” and ” for the J-invariant, respectively, J-anti-
invariant partsof a2-form, or symmetric 2-tensor. But we shall need occasionally
toalsoconsider [[A(,J‘ M TI-components of 2-formsand we makethe conventionto
use the notation (-)" for this. Thus, for instance, (5, will denotethe [ A%?M -
component of the =-Ricci form p, of (g, I). In addition to d”, we shall also use
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d!, the complex differential with respectto 7, acting on functionsby d’ f = Idf
(see Sect. 2.3).
The Lemmabelow was essentially proved in our previous work [3].

Lemmab. Let (M, g, J, 2) be a strictly almost Kahler 4-manifold satisfying
(3). Then, ontheopen set U where N # 0, theKahler nullity D of (g, J), andits
orthogonal complement, D, are both involutive distributions. Furthermore, on
U, (g, I) isan almost Kahler structure and the Kahler nullity of (g, 1) contains
the distribution D+. Moreover, the following relation between the canonical
Chernformsy, and y, of (g, I) and (g, J) holds:

yi = 3y; —dd’ (In|V2)?). (51)

Proof. The opposite almost complex structure I is defined (on U) through the
distributions D and D+, whichin turn are determined by the 1-jet of J. To obtain
information about the 1-jet of 7, wethusneedto study the2-jet of J (equivalently,
the 2-jet of £2). For this purpose, let us define the 1-formsm;, n;, i = 1,2, by
thefirst relation below, while the other threerelationsfollow easily from the first
one and (21), (22).

Va=mQ@a+nQJa+my® Jia+n, Joa,
ViJa)=—-n®@a+m@Ja+ (a—nz)  Jra+ (my — Ja) ® Jra;
ViJia)=—my@a+ (ny—a)® Ja+m1 ® Jia+ (b —ny) ® Jora;
V(Ja) =—ny@a+ (Ja—my) ® Ja+ (n1 — b) ® Jia + m1 Q Joa.

Notethat for astrictly amost Kahler 4-manifold (M, g, J, §2) satisfying (3), the
identity (37) becomes

(52)

1
0= é(dj(lc — )z — (BW3)z, 2).

Using (20), (9) and (21), this can be further written as

%d|V[2|2 =dla* = —J (W, 2) = —2J W5 (¢)(a). (53)
Hence the 1-form m; isimmediately determined to be:
1 1
my = Ed(IHIVQIZ) = —WJW3*(¢)(a). (54)

As a consequence, observe that mi € D, where here and henceforth the super-
script ¢ denotes the dual vector field of a 1-form, through the metric. The forms
ni, ma, np are determined by the relations (23). Indeed, under the condition (3),
the 2-forms R(¢) and R(J¢) are J-anti-invariant, thus, according to (23), we
have

(da—Janb)y =0, (d(Ja)+anb) =0.
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These relations combined with (52) lead to
1 J 2
np=-b—Jmi=—-b-— Ed (In|VR19);
1
mo = EJa+Jmo; (55)
no=—Jmy = Ea + mo,

where mg isal-form dual to avector field in D.
Thus, formulae (52), (54) and (55) imply

da(X,X)=d(Ja)(X,X)=0, VX,X e D,
d(ha)(Y,Y) =d(ha)(Y,Y)=0, VY,Y' € D*.

As the vector fields dual to a, Ja generate D+ and the vector fields dual to
Jia, Joa generate D, the above relations show that D+ and D are involutive
distributions.

To show that (g, I) isalmost Kahler, observefirst that the fundamental forms
of (g, 1) and (g, J) arerelated by 2 = 2 — ﬁa A Ja. We take the covariant
derivative of thisreation and use (21) and (52-55) to get

VR =2my®@¢p —2ImoQ 19, (56)

where ¢ e [A%?M]] is the natural gauge for (g. I), determined by ¢ through
the relation

- 2
¢=¢+—7=JanJa. (57)
|a|?
Then, d2 = 0 is immediate from (56), and so is the claim about the Kahler
nullity of (g, I) sincea = 2mg isdual to avector fieldin D.
Finally, taking the covariant derivative of (57) and using (22) and (52-55),
one finds

Vo=b@Ip—a® 2, (58)
wherea = 2mq and

b=3b+d’(In|V2)?). (59)
Sincey; = —db and y; = —db (see (25)), relation (51) follows. O

The next step isto gather more information on the curvature components of
the almost Kahler metric (g, I).
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Lemma6. Let (M, g, J) be a strictly almost Kéhler 4-manifold satisfying (3)
and (g, I) bethe opposite almost Kahler structure as above. Then, thetrace-free
Ricci form po of (g, J) and the [ A%° M ]]-component of the star-Ricci form g,
of (g, I) aregiven by:

1 VeP\—~ — ., — _ 1 _
pPo= 19 + 2 + lp, (,0*)] = lp, Whel’ellf = Evd(mvalZ).Q.

4 4
(60)
Moreover, the identity (34) reads as
I _ _
21d|VQ|2 =dl|al* = —1(§W5, R2) = —2IW; (¢)(a) . (61)

Proof. Wefirst prove the equalitiesin (60). With respect to the gauge ¢ from the
previous lemma, the Ricci identity for §2 takes the form (compare with (23))

da—1lanb=—R(I$); d(Ia)+a Ab=—R(). (62)

We proved in Lemma 5 that a* € D and that D is an involutive distribution.
It thus follows that the left-hand sides of the relations (62) vanishon X A JX
with X € D*. Thisis equivalent with the fact that the [ 4% M ]]-components of
R(£2) and R($2) are equal. Thus

(p0)] = (P)] =V,

and it remains to obtain the claimed expressions of ¥ and the §-corr_1ponent of
po. For thiswe turn to relation (51). Using (24) and its analogue for ¢

db=anla—R(Q),

relation (51) is equivalent to
1 _ 1 1
gR(.Q) — ER(.Q) — Edd’(ln|V.Q|2) — ga ANJa+ 551 AJa=0. (63)

Taking the [[ A% M ]|-component of (63) we obtain

N7 1 1 2N\ 1
v = é(dd In|V9); = Evd(lnme)Q,

where the first equality uses that (d(In|VR|?)* € D (see (53)), hence
d’(In|VR21%) = d'(In|V$2)?), and the second equality follows from (13) and
(15).

Since (d’ (In|V$2|?))* € D and D isinvolutive, we also have

(dd’ (In|V§21?), (2 — 2)) = 0.
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Thus, taking the inner product of relation (63) with 1/2(£2 — £2) and using (20)
and its analogue for the almost Kahler structure (g, I), we derive

(R©), ) = 5 + T vap
9 - 2 8 9

and the desired form of the £2-component of pg follows.

Now we provetherelation (61). The starting point for thisistheidentity (34)
established in Lemma 4. Taking into account that the Ricci tensor is J-invariant
and that the anti-selfdual Weyl tensor decomposesinto W~ = W; + W, + Wy
(with respect to the almost complex structure ), relation (34) can be written as

1
0=V, zp0+ E(ds ANZYT = 20W )z —2(8Wy )z —2(8W3) 7 .

We consider the £2-component of this relation, taking into account that for
(W[ )z, (8W, )z wehave similar expressionsto the onesfor (§W;")z, (§W, )z
given in (35) and (36). We thus get
— 1, 1,
0=(Vyzp0, 2) — é(d (kK —5)z+ E(d K)z
—(Viz(p)]. 2) = 28(p) )z — 2((6W3)z, 2) .
We plug the expressions for po and (5,) given by (60) into the above formula
to eventually obtain
1 1
0=2(d"1al")z - 5(d"1a")z - 5(d's = d’s)z (64)
—2(8%)z — 2((8W3)z, 2) .

To derive the latter formula we have also used that (¥, V,,_,;,£2) = 0 which
followsby Lemmab, since/Z — JZ € D*.
Substituting the expression for pp found in (60) into (26), and applying J,
we get
dls —d’s = —d'|a|® + 48V
Using this|ast relation back in (64) to replacetheterm 3 (d’s — d”s) 7, we obtain

1 _
0=2d"lal®); - E(df|a|2 +d"lal®); — 2((6W5)z, 2) . (65)
Sincea® € D, the 1-form
(8W5, 2) = 2W5 (¢)(a)

isdual to avector fieldin D+, and then relation (65) isequivalent with therelation
(61). O

The next result is an “iteration” of Lemmab.
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Lemma?7. Let (M, g, J) be a strictly almost Kéhler 4-manifold satisfying (3)
and let U denote the open set of pointswhere VJ # 0. Let (g, ) bethe opposite
almost Kahler structure on U, associated to (g, J) and assume that on a non-
empty open subset Uy C U the opposite almost Kahler structure (g, 1) is not
Kahler. Then, on Uy, the opposite almost Hermitian structure (g, J) associated
to (g, 1) is (g, —J). Moreover, the following relation between the canonical
Chernformsof (g, I) and (g, J) holds

vi = —vs =3y —dd (In|V2|? — 2dd’ (In|V2?). (66)

Proof. From the assumption that (g, 7) isnot Kahler on Up and from Lemma5,
it follows that the Kahler nullity of (g, 1) isprecisely the distribution D+ on Uy;
the opposite almost complex structure J associated to (g, 1) is then defined by
J=IonDtandJ=—IonD,ie,J=—J.

We now prove (66). Asin Lemma 5, we need to first investigate the 2-jet of
2 (equivalently, the 1-jet of a), with the hel p of the Ricci relations (62) and (61).
Let pi.qi, i =1, 2 bethe 1-forms defined by thefirst relation below. The other
three relations follow by (21) and (22).

Vi=piQ@a+qiQ@Ja+pr® Jia+q>Q Joa ;
ViJa)=—q®a+p1®Ja+(a—q2) @ J1a+ (p2—Ja)® Joa;
V(ha) =—-p2®@a+(q2—a)®@Ja+p1®Ja+ (b—q1) ® Joa;
V(a)=—q:®a+ (Ja—p1)®Ja+(q1—b)®JJa+ p1® Joa .

From the formula (61) of Lemma 6, it followsimmediately that the 1-form p; is
given by

(67)

1 — 1 T
p1=5dn|V2P) = ~Tp! s 9@ (68)

An important point of this formulais that pi e D*. For the 1-forms g1, p2, g2,
one obtains
g1=—Ip1—b—d’ (In|V2?);

1 1
p2= —Ellec'l + EJa; (69)

q2 = Ip2,

where I; and I denote the (local) almost complex structures corresponding to é
and 1 ¢; recal that J;, J> stand for the almost complex structures dual to ¢ and
J¢. Let usjust briefly explain how the relations (69) are obtained. Since both D
and D+ are involutive distributions, we have
(da)(X, X') = (d(Ja))(X, X') =0, VX, X' € D*
(d(J1a) (Y, Y") = (d(a))(Y,Y')=0, VY, Y € D.
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and using (67), these can be seen to be equivalent to g, = I p». For theremaining
two relations we use (67) and g> = 1p, plugged into the identities (62). Taking
the 1/2(£2 + £2)-components and the [ ASM]]-components of the identities
thus obtained, we eventually get

qi+Ipr+b=—d'(In|vepP),
which is the second relation of (69); the [[A%2M])-components of the Ricci
identities (62) imply
p? = —5l2ha,
or, equivalently,
1 = i 8 1
p2 = —Elzjla + po, with Po € D—.

So far we have basically followed the track of the computations madein Lemma
5. However, now we can obtain even more by determining completely the 1-form
po- For this, write the relation between 2 and £2 as

2 = ia AJa— 2,
|a|?
and take the covariant derivative of this relation, using (21), (56), (67-69). This
eventually leadsto po = 3 Ja.
As we have already noticed, the opposite almost Hermitian structure (g, J)
associated with (g, 7) is not a new structure, but just (g, —J). However, the
iteration of the construction, imposes anatural new gauge ¢ € [ASM]],

.- 2 -

¢=¢+WIZ:/\I¢(&), (70)
which may be different than the initial gauge ¢. Taking the covariant derivative
of (70) and using (58), (61) and (67-69), one finds, after a straightforward com-
putation, that the 1-form & of the structure (g, J) with respect to the gauge ¢ is
given by (compare with (59)):

b=23b+d (In|VR2? + 24’ (In|VR|?).

Now relation (66) immediately follows since db = —Yi =V O

Proof of Proposition 2. We assume asin Lemma7 that (g, I) is not Kahler on
an open set Up C U. Then on Uy both relations (51) and (66) hold, and taking
the appropriate linear combination of them, we obtain

5(y; — yy) = dd' (In|V$2]?).
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On the other hand, starting from (25) and its companion relation giving y;, and
by using (20) and the curvature information picked up in Lemma 6, we compute

vi—v,=RQ2)—anla—R(2)+anlJa

= 'sz(g +2) |V§|2(9 2)
N 8 16 '
From the last two identities we obtain the equality
VR ? — VR — 1 _
| 5 | (2+R2) - | 16' R-92)= galaz’(ln|wz|2), (71)

which holds at every point of the open set Up. Since d’(In|V$2]?) is dual to a
vector fieldin D+ and D+ isinvolutive, it followsthat the right hand-side of (71)
hasazeroinner product with £2 + £2. For thisto hold for theleft hand-side of (71)
aswell, wemust have |V§2| = 0 at every point of Up. But thisisacontradiction,
since Uy is a subset of U, the set of points where |[V$2| # 0. Therefore, the
assumption that the opposite structure (g, ) is nhot Kahler must be false, hence
we proved Proposition 2. O

5. Proof of Theorem 2

As a consequence of Theorem 1 and Proposition 1, wefirst obtain the following
global version of Proposition 2, which is essential for the proof of Theorem 2,
but also presents interest in its own.

Proposition 3. Any connected, strictly almost Kéhler 4-manifold (M, g, J, §2)
satisfying the third Gray condition (3) admits a globally defined Kahler structure
(g, I which yields the opposite orientation to the one of (M, J).

Proof. We show that the opposite amost Kahler structure (g, ) defined asin
Theorem 3 can be extended globally on M. Let p € M — U be any point of the
zero locus of the Nijenhuis tensor N. By the unique continuation property of N
(see Proposition 1), there exists anumber k > 2 such that

(V'2)(p) =0, V1< < (k—1); (V'2)(p) #0.
As aconsequence, we obtain
1
0= (V'V(Vi2), VI72), = =S AV 2% (p) + IV 21 (p),
which showsthat A(|V¥~1£2|?) # Oat p, henceaso in asmall neighborhood of

p.On U, thedistribution D+ is spanned by the commuting hamiltonian Killing
fields £ and i~ (see Theorem 1), sothat d|V*~*§2|? iszero on D*; equivalently,
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|VF=1£2|? isafunction on the Riemann surface X. It then follows that on U we
have (see (14)):

dd’ (\V*121%) = —A(VF e 25, (72)

where, recall, 25 denotes the volume form of the (locally defined) Riemann
surface X'; as a global object on U, §25 is given by the restriction of §2 to
DCTU,ie R5(,-) = 2(prP., prP.) where pr? denotesthe projectionto D.
We thus can define I in asmall neighborhood of p by setting

2
21 =-Q - ————dd’ (|[V-12).
1 AV (I 1)
By (72), this agrees with the definition of 7 on U. Since U isdensein M and
(g, I) isKahler on U, we conclude that I can be extended as a Kahler structure
onwhole M. O

Now we are ready to prove Theorem 2.

Suppose for contradiction that (M, g, J, £2) is a compact strictly almost
Kéahler 4-manifold whose curvature satisfies (3). According to Proposition 3,
we can consider (M, g, I) as a compact Kahler surface which aso admits an
almost Kahler structure (g, J, £2), compatible with the opposite orientation to
the one of (M, I); equivalently, £2 is an indefinite K&hler structure on (M, I)
(see [42]). Note that the distributions D and D+ are then well defined on the
whole M, respectively as the (—1) and the (41)-eigenspace of the symmetric
endomorphism Q = J o I of T M. Moreover, since (g, I) isKahler, therelation
(60) of Lemma6 impliesthat on U (and therefore, by continuity, on M) the Ricci
tensor has the form

Ric=>gs, (73)
2
where g is defined on whole M as the restriction of g to the distribution D.
Alternatively, (73) can be directly derived from the explicit form of g given by
(5) of Theorem 1. Using (25) and (73), it is easy to compute the Chern forms y,
and y; of (g, I) and (g, J), respectively,

s s |VRP)?
=-05, == 2s. 74
Yi 5ix 12 <2+ 2 ) z (74)

It follows that y; and y; are both degenerate on M. From WU's relations, we
conclude

A(M, I) =2e(M) + 30 (M) =0; ¢5(M,J) =2¢(M) —306(M) =0,

hence the Euler characteristic e(M) and the signature o (M) of (M, I) both
vanish. From the Kodaira classification [10] and the results of [31] and [42], we
concludethat (M, I') canbearuled surfaceover anelliptic curve, acomplex torus,
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ahyperelliptic surface, or aminimal properly elliptic surface which isafibration
over acurve of genus at least two, with no fibers of singular reduction. We can
easily excludethe caseswhen (M, I) isatorusor ahyperelliptic surface. Indeed,
by replacing M with afinite cover in the case when (M, I) is hyperelliptic, we
can always assumethat (M, I) isacomplex torus. By results of Taubes[45,46],
onthe4-torusany symplecticformishomotopictoaninvariantone;i.e., [y;] = 0
and [y,] = 0, so that by (74) we obtain

1
0=1lys —y]-12] = Z/ V22,
M

where - denotesthe cup-product of H2(M, R). Thelatter equality contradictsthe
assumption that J isnot integrable.

We thus have to analyze the remaining two cases, when (M, I) is aruled
surface or aminimal elliptic surface. Since % (and %) isa(real) 7-holomorphic
vector field in D+, we conclude that D+ is a holomorphic, complex rank one
distribution on (U, I), hence also on M, which gives rise to a non-singular
holomorphic foliation F on the complex surface (M, I). From (74) we get
V2|

1
E(VI -y = Q5 € 2ncy(TF). (75)

Our next aimisto show that after replacing M with afinite cover if necessary,
HO(M,TF) +0.

In the case when (M, I') admits an dliptic fibration (which aso includes
someruled surfacesover an elliptic base), we can use an argument from[5]: since
e(M) = o (M) = 0,weknow that the elliptic fibersare smooth or multiple; since
c1(M, I # 0,wehaveby Kodaira sformulathat ¢, (M, I) isanon-zero multiple
K of the Poincaré-dual of any regular (elliptic) fiber F. Since [F]-[F] = 0in
homology, from (74), (75) and using the Poincaré duality, we derive

1 K
0=—/ VI/\(VI_VJ)=C1(Mal)‘[yl_yj]=__/ IVRI2825.
2 M 4 F

Notethat £25 isasemi-positive (1,1)-form on (M, I) whose kernel, at any point
of U,isTF,while F isa(smooth) holomorphic curvein (M, I); it then follows
from the above equality that, at any point x € U, the fiber F must be tangent to
F;sinceU isdensein M, weconcludethat F istangent to thefiberseverywhere.
But as observed in [5], by replacing M with a finite cover if necessary, (M, I)
then admitsaglobally defined, non-trivial holomorphicfield tangent to thefibers,
which is also a holomorphic section of T F.

Suppose now that (M, I) is aruled surface over an elliptic base B. By the
previous argument, we may also assume that (M, I') does not admit any elliptic
fibration. According to the the classification of non-singular holomorphic folia-
tions (see[15, Prop.6] and [24, Sec.3]), under the above assumptionsfor (M, 1),
the following two cases arise:
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Casel: Fistangent totherational fibers; since (M, I) isnot an elipticfibration,
according to [39] we have H(M, T F) # 0 as claimed.

Case 2: F isafoliation transversal to the rational fibers, i.e. a Riccati foliation
in the terminology of [24]. In this case ¢1(T F) is the pull-back of a class of
H?(B, Z) (see [24]), so that c1(T F) is amultiple of the Poincaré-dual of any
rational fiber F. Since[F] - [F] = 0in homology and in view of (75), we have

f(J/I VJ)———f|VQ|292

Then, we conclude as in the case of elliptic fibrations that each fiber F must be
tangent to F, which is a contradiction.

As afinal step of the proof of Theorem 2, note that T.F = D+ liesin the
kernel of the Ricci tensor of g (see (73)); then, by the well-known Bochner-
Lichnerowicz argument, for any holomorphic section & of TF C T M we get

= 0. Sincewe already showed H°(M, T F) # 0, it followsthat 7 F should
be parallel, so must be then its orthogonal complement D. But then J must be
parallel too, a contradiction. O
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