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1. Introduction

An almost Hermitian structuren an oriented manifold1" is a triple (g, J, ) of a Rie-
mannian metricg, an almost complex structur&, compatible with the orientation, and a
non-degenerate 2-form, related by

w(X,Y) =g(X,JY),

for any tangent vectorX, Y € T M. If the almost complex structur& is integrable, the triple

(g, J, w) is aHermitian structure If the form w is closed, i.e., symplectic, then the triple

(9, J, w) is called analmost Kahler structure Quite rarely, the two conditions] integrable

andw closed, hold simultaneously, and in this case the tigle), ) defines &ahler structure

on the manifold. A metric will be called &hler, Hermitian, or almost &iler, if it admits a
compatible corresponding structure. It is possible, and we show that this happens quite often,
that a given metric is Hermitian and almosatér, but it is not a léhler metric. One of our

1E-mail: va@math.acad.bg.
2E-mail TC-Draghici@neiu.edu.
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goals is to understand the relationship between the space of Hermitian metrics and the space
of almost Kahler metrics on compact complex surfaces.

The subject of our paper could also fit into the wider context of the following problem: Given
a closed, oriented manifoli, and a Riemannian metrg on M, determine if the metrig
is Kahler, Hermitian, or almost &iler, and also find how many structures of each type are
compatible with the given metric. The answer to this problem is clear only in real dimension 2
where the notions of (almost)dfler and Hermitian structures coincide. The dimension 4 is
the next step to consider. It is well known that the holonomy group determines if a given metric
is Kahler, in any dimension. In dimension 4, it is also understood fairly well when a given
Riemannian metric admits (locally defined) compatible Hermitian structures, in the framework
of so calledRiemannian Goldberg—Sachs thef}. The number of such compatible structures
is encoded in the structure of the self-dual part of the Weyl curvature [24, 3]. Riemannian
metrics on 4-manifolds that admit a pair of distinct, compatible complex structures have been
recently studied in [16, 23, 4]; it follows that “generically” orcampaciriented Riemannian
4-manifold, there is at most one globally defined positive orthogonal complex structure.

It seems more difficult to determine whether or not a given metric admits compatible almost
Kahler structures, evenin dimension 4. Recently, a strategy to do this has been outlined in [5] and
this strategy has been used to show that certain Riemannian metrics cannot admit compatible
almost Kahler structures (see also [22]). The number of compatible alnadgekstructures fora
given metric is also not known. We treat these questions for the Riemannian metrics, compatible
with the complex structure on a compact complex surface. As applications, we obtain some
alternative proofs for results of LeBrun on the Yamabe constants of Hermitian conformal classes
and give some answers to a question of Blair about the isometries of alrablgrkietrics.

The authors would like to express their gratitude to David Blair for his interest in this work
and for many helpful suggestions.

2. Statement of the main result

Let (M, g) be an oriented, Riemannian 4-manifold. The Hodge operator satigfiesid
acting on the bundle of 2-forms and, therefore, we have the splitting

A’M =ATM O A M,

into self-dual 2-forms and anti-self-dual 2-forms, corresponding te-thand—1-eigenspaces
of x. The well known correspondence between the (oriengedithogonal almost complex
structures and the self-dual forms for a Riemannian 4-manif®ldg) imply that any self-
dual, harmonic 2-fornm, of pointwise constant Iengt{ﬁ, induces an almostadiler structure
(9, J, w). Because of this equivalent definition, when the metric is fixed, we will very often
just refer to the form when thinking at the almosatdér structure.

Given a symplectic fornm on M, thespace of associated metricsao defined by

AM, =1{g| () e ATM, (i) |wlg= 2},

is an infinite-dimensional, contractible space. Each metric #dh, defines an almost#tiler
structure with fundamental form. Because of condition (ii), there are no two elementsivh,,
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in the same conformal class of metrics. We definestiace of conformal associated metrics to
w by
CAM, ={g|we ATM}.

Indeed, to justify the name, it is easily seen that
CAM, = ¥ (M) -AM,,

whereC°(M) denotes the space of smooth, positive functions/on
If Sdenotes the set of all symplectic formsgh then the space of all almoseKler metrics
and the space of all conformal almosatér metrics are, respectively:

AK = UAMw, CAK = UCAMw.

w€eS w€eS

The following easy proposition motivates the questions we are addressing in this paper.

Proposition 1. Let M be a closedoriented4-manifold admitting symplectic structures.

(a) If w and ' are distinct but cohomologous symplectic forms on Men CAM , N
CAM, = 0.

(b) Let g be a Riemannian metric on M. There exists a finite-dimensional vector subspace
V of C*(M), such that for any fe €5°(M) with f2 ¢ V, the metric § = fg is not an almost
Kahler metric.

Proof. (a) Assume there exists ametge CAM ,NCAM . Letusrecall thatin dimension 4,
harmonic 2-forms are invariant to conformal changes of metric, as also invariant is the splitting
into self-dual and anti-self-dual forms. Thenand«’ are both harmonic with respect tp
But by the Hodge decomposition theorem there is a unique harmonic representative in a given
cohomology class. This contradicts the assumptica «'.

(b) Given the metriqgy, assume that the metrig = fg is an almost Khler metric. This is
equivalent to the existence of a self-dual, harmonic 2-fefrwith

1
2 n2 __
?l(!) |g—|a)|g/—2.

Let a3, ..., ax form an orthogonal basis for the space of self-dual, harmonic 2-forms with
respect to the global inner product induced by the metrithen,o’ = aya1 + - - - + aka, for
some constants, .. ., ax. It follows that

2f2 = Zaiaj fij’

where f;; are the smooth functions given by the pointwigscalar product oty and«;,
fij = (o, @j)g. TakingV to be the space generated by thes, the conclusion follows. [J

A short way of rephrasing part (b) of Proposition 1 is that in a given conformal class most
of the metrics are not almostdfiler. As for part (a), it leads to some questions. First, one may
ask under what conditions two symplectic forms share a same associated metric. As we saw,
this is not possible if the forms are cohomologous.
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Question 1. On a closed4-manifold M, when can we find a Riemannian metric g admitting
two different almost Ehler structures(g, Ji, w1), (9, J, wy) with w; # +w, ? How many
different almost Khler structures could a given metric adfit

It is well known that ifM is a K3 surface or a torus amgis a hyper-Kahler metric, thergy
admits exactly ai$?-family of compatible almost KFler (in fact, Kihler) structures. We would
like to investigate other situations.

From a symplectic fornm, many others can be obtained by deforming the given one with
“small” closed 2-forms. As symplectic forms in the same cohomology class have all disjoint sets
of conformal associated metrics, it looks that many conformal classes contain alatdet K”
metrics.

Question 2. Find conformal classes which do not admit almoahker metrics.

We consider Questions 1 and 2 for Hermitian metrics on compact complex surfaces. It makes
sense to work only with compact, complex surfaces which also admit symplectic structures. Note
that any closed complex surface with the first Betti nuntiheeven admits lahler structures,
hence, in particular, symplectic structuresbifis odd, the situation is more delicate and has
been settled only recently (see [7, 14]).

Proposition 2. (O. Biquard [7])The only compact complex surfaces wittobld which admit
symplectic structures are primary Kodaira surfaces and blow-ups of these.

Let (M, J) be a compact complex surface admitting symplectic forms. Denoté tye
space of all Hermitian metrics compatible with the complex struclukgere is our main result
of this note.

Theorem 1. Let (M, J) be a compact complex surface which admits symplectic structures.
(a) If by is even thedd ¢ CAK. Moreover
(al) Assume that g is a&hler, non-hyper-Kahler metric on M with Kahler formw. Then
w and—w are the only almost Khler structures compatible to; g
(a2) Assume that g is a hon&kler, conformally-kahler metric on M.
If c1 # 0, one of the following two situations occurg has exactly two Sfamilies of
associated almostdhler structuresor g is not an almost Khler metric.
If c; = 0, one of the following three situations occugshas exactly two Samilies of
associated almostahler structuresg has exactly one’Jamily of associated almost
Kahler structuresor g is not an almost Ehler metric.
(b) If by is odd there are two cases
(b1) If (M, J)is minimaltherH c CAK. Inthis caseeach metric g¢ HNAK has exactly
one S family of almost Khler structures associated.
(b2) If (M, J) is not minimal therH N CAK = @.

The relation between the spadésand CAK is a consequence of a result of P. Gauduchon
([13, Lemme 11.3]; see also Proposition 3 in the next section). The main novelty of the the-
orem consists in the estimations on the number of almasilét structures compatible with
a given metric. Regarding Question 1, we see thattlr, non-hyper-Khler metrics have an



Hermitian and almost Khler structures od-manifolds 5

essentially unique compatible almosaldér structure. However, as we see in (a2), there are
examples of Hermitian, nonddiler metrics, having' families of compatible almost &tiler
structures. These examples are strictly almatligi structures (i.e., nongler), as it follows
from (al).

As an immediate consequence of (b2), we get an answer to Question 2.

Corollary 1. On blow-ups of primary Kodaira surfacgdermitian conformal classes do not
contain almost Khler metrics.

3. Proof of the main result

The proof relies on a series of propositions which we give below. Recall thaiegéorm
6 of an almost Hermitian 4-manifoldM, g, J) is defined bydF = 6 A F, or equivalently
6 = J§F, whereF denotes the Hhler form of(g, J), § is the co-differential operator defined
by g, andJ acts by duality on 1-forms. (In this section and subsequently, we prefer t6 use
for the fundamental form of a nondfiler, almost Hermitian or Hermitian structure, leaving
to denote harmonic, self-dual forms.) It easily seen tigais a conformal invariant, that is, it
depends on the conformal clasggdind not on the metric itself. It is also known that Hermitian
metrics withd® = O correspond to locally conformaldfiler metrics and the Hermitian metrics
with & = 0 are, in fact, Khler metrics.

A Hermitian metric such that the Lie form is co-closed, i58.= 0, is called by Gauduchon
a standard Hermitian metricHe proves in [11] the existence of standard metrics in each
Hermitian conformal class (in any dimension) and its uniqueness modulo a homothety. In
some sense, the standard Hermitian metric is the “closest” tahdelKimetric in its conformal
class.

The first result we need is due to Gauduchon. For completeness, we give a proof, slightly
different than the original argument in [13].

Proposition 3. (Gauduchon [13]Pn a compact complex surface, Bhdowed with a standard
Hermitian metric g the trace of a harmonicself-dual form is a constant.

Proof. Let (M, g, J, F) be the standard Hermitian structure bh Any self-dual forma €
ATM can be uniquely written as:

a=aF+ B+ 8, 1)

with a € @*(M) andB € A%>°M. We have to prove that if is also (co)closed thea is a
constant. Taking the divergence of both sides of (1), it follows

0=Jda+aJlo+8pB+pB).
Applying J to the above relation, we get:

da= —ad + J§(B + B).
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Taking inner product of both sides witha and integrating over the manifold implies
1 _
[ 1daa =~ [ So.d@du+ [ 356+ p). dard
M M 2 M

1 _
- —f L 56, % du - f ((B+B).dIdadu =0,
M 2 M
sincesd = 0 anddJdae ALIM. Thereforeda = 0, soa is a constant. [

Corollary 2. Let(M, g, J, F) be a Hermitian surface. Then any harmarself-dual formw
is either the real part of a holomorphi@, 0) form or is non-degenerate everywhere on M.

This result already gives the relations between the spgda@sdCAK stated in Theorem 1
at (a), (b1) and (b2). The next propositions deal with the number of compatible alrabksrkK”
structures that various Hermitian metrics can have.

Lemmal. Let(M, J) be acomplex manifold with £ 0,equipped with a standard Hermitian
metric g(which may be Ehler), and let F be the fundamental form. Suppesgex, are two
harmonic self-duap-forms which satisfw? = 3. Then the traces of these forrfwghich are
necessarily constantare equal up to sign

(a1, F) = x(a2, F).

Proof. By the known decomposition of 2-forms;, oz can be written uniquely as:
a1 = aF + B1 + B,
oy = aF + B2+ fo,

wheregy, B are(2, 0) forms anday, a, are constants. Nowf = a% is equivalent to
@i —a)F? =2(B2 A B2 — P A B1) = Re((B2 — B) A (B2 + Bo)).-

By the assumptioml; £ 0, it follows that the formB, — 81 must vanish at some point dvl.
From the above equality, &5 is a volume form onM anday, a, are constants, it follows
a?—az=0 0O

Proposition 4. Let g be a standard Hermitian metric on a complex surfdde J) with ¢; # O,
and let F be the fundamental form. Denotedvyhe unique self-duaharmonic form which
has trace equal td and is orthogonal to the space of holomorpfic 0) forms with respect to
the cup product. Supposeis a harmonig¢self-dual form such that? = w? everywhere on M.
Thenae = +w.

Proof. By Lemma 1, trace = *+tracew = 1. Assume trace = tracew = 1. In this case
o can be written as

o = o+ Re(p),

wherep is a holomorphia2, 0) form. Froma? = w?, it follows the relation

20 A Re(B) + Re(8)? = 0,
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everywhere oM. Integrating this relation oM, the first term vanishes because of the choice
of w. Therefore we get R@) = 0, but asg is a(2, 0) form this impliesg = 0. Therefore we
proveda = w. Similarly, if tracex = —tracew = —1, it follows thate = —w. O

Proposition 5. Let g be a Khler metric on M with Khler formw. Then either g is a hyper-
Kahler metric or +w are the only almost &hler structures compatible to g.

Proof. If c; # 0 the conclusion follows immediately from the Proposition 4. Our argument
below covers all cases.

Assume there exists another harmonic, self-dual ot +w, inducing same volume form
asw. Thenw' is uniquely written as

o =aw+n,

wherea is a constant ang is a smooth section of the canonical bundle. Frofh= w? we
deduce
&+ 3nl* =1,

hencelal < 1. If |a| = 1, thenn = 0, thereforaw’ = +w. If |a] < 1, we show that the metric

g is in fact hyper-Kahler. Indeedg; = (1 — az)‘%n is a self-dual harmonic 2-form of length
V2, pointwise orthogonal te, so it induces another almosaHler structure oM, (g, Ji, w1),
with J andJ; anti-commuting. Sincd is parallel with respect to the Levi-Civita connection of
g, it follows that(g, J» = J o J;) is another almost &filer structure, withl, anti-commuting
with both J and J;. Now, using an observation of Hitchin ([15], Lemma 6.8) that any triple
of anti-commuting almost &Filer structuregg, J, J;, J,) defines a hyper-#Hiler structure, we
complete the proof. [

Proposition 6. Assume that g is a nongkler, conformally-Kahler metric on a compact com-
plex surfacgM, J).

If c; # 0, one of the following two situations occurg has exactly two Sfamilies of
associated almostdhler structuresor g is not an almost Ehler metric.

If c; = 0, one of the following three situations occuig has exactly two Sfamilies of
associated almost#hler structuresg has exactly one’Samily of associated almostikler
structuresor g is not an almost Ehler metric.

Proof. First we will consider the casg # 0. Letg = fg’, wheref e C° andg’ is a Kahler
metric on(M, J) with Kahler formF. Let us assume also théd, J, w) is an almost i&hler
structure. Thew is ag-harmonic, self-dual form, aj-length+/2 at every point oM. As g is
a conformal metric tg, the formw is harmonic and self-dual with respectgoas well. Hence
there exists a constaat# 0 and a holomorphi¢2, 0) form g such that

w = aF + Re(B).
But in this case, note that the forms

o = aF + cog2rt) Re(B) + sin(2rt) Im(B),
w; = —aF + cog2rt) Re(B) + sin(2rt) Im(B),
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are also harmonic, self-dual and of lengtl2 with respect to the metrig, for anyt < [0, 1].
Thereforeg has at least tw&'-families of almost Khler structures compatible ¢p

Suppose now thay, J/, o) is some almost Kfiler structure compatible gpand we would
like to show that it must be one of the almosaldér structures described by the the two
St-families above. With the same reasoning as above

o' =a'F + Rep),

wherea’ is a non-zero constant adis a holomorphic2, 0) form. Sincew? = w2, by Lemma
1 we geta’ = +a. Let us assuma’ = a, the argument being similar in the other case. Now
w? = w?implies R&B)? = Re(B')?, which is equivalent to

Re(p — ) ARe(p + p") = 0.

This means that at every point &, the form Rég + ') is collinear to In{8 — g8’). As both
Re(B + ') and Im(8 — B’) are closed, we must have

Re(B + ") = »Im(B — ),
for A a constant oM. The above relation implies

M=l 2
ﬁ_)\2+1’8 x2+1ﬂ’
or, further,
A= 2,\
Re(g’) = Re(B) + Im(ﬁ)

2241
It is easy to see now that is in fact one of the forms in the family;".

Next, let us consider the casg = 0. By Kodaira’s classification theorem we distinguish
two sub-cases.

() (M, J) is a hyperelliptic surface or an Enriques surface. For these the dimension of
the space of the harmonic self-dual 2-forms of any Riemannian metbic is 1, hence, by
Proposition 1, there are no noraKler, globally conformal Khler almost i&hler metrics.

(i) (M, J) is a complex torus or a K3 surface. For these= 3 and they have hyperddiler
metrics. Let us first remark thatd is such a metric, then all self-dual, harmonic forms with
respect tog’ have constant length. Therefore there is no naKr, almost Kahler metric
which is conformal to a hyper-#iler metric. However, a complex torus or a K3 surface do
have Kahler metrics other than the hypeaHlér ones. Choose one such metric and denote it
again byg’, the corresponding #&tiler form beingy’. Suppose thag = fg' is a non-kKahler,
conformally Kahler metric which has an almostaKléer structures. Then we have

o =ao' + Re(B),

wherea is a real constant anfl is a holomorphia2, 0) form. In fact, 8 is everywhere non-
degenerate, so it is a holomorphic symplectic formbn

Now we have two possibilities: i = 0, then the metrig has oneS! family of almost
Kahler structures given by

wy = co92xt) Re(B) + sin(2rt) Im(B);
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if a # 0, then the metrig has twoS' families of almost Khler structures given by
wi = +aw’ + cog2rt) Re(B) + sin2rt) Im(B).

In either case, if had other almost &filer structures, it would follow th#thas constant length
with respect tay’, which is a contradiction to the fact thgtis not hyper-Kahler. [

We finally put together the above results to prove Theorem 1.

Proof of Theorem 1. Let us denote byy the geometric genus of the complex surfabk J),
i.e., the complex dimension of the space of holomorgRi®) forms. It is well known that
by = 2pg whenb, is odd ando;. = 2pg + 1 whenb is even.

Let us consider first the case odd. By Proposition 2 of O. Biquard, the only compact
complex surfaces that also admit symplectic structures are primary Kodaira surfaces (case of
(b1)) and blow-ups of these (case of (b2)). For the primary Kodaira surfaces it is also known
that they do admit holomorphic symplectic structures, that is, there exists a nowhere vanishing
holomorphic(2, 0) form. Denote such a forrd and consider now a Hermitian metigc The
real formw = Re(B) is the real part of a holomorphi@, 0) form onM hence it is a harmonic,
self-dual form for the metrig. Asw is also non-degenerate, there is a conformal metgastech
thatw and the new metric define an almosatér structure. We hence proveldc CAK for
primary Kodaira surfaces. Note also thaj i Hermitian, then any almostdiler structure, say
w, has to be the real part of a holomorpki#; 0) form sinceb, = 2py. Hencew = Re(B), but
then

wy = c0g2rt) Re(B) + sin(2rt) Im(B)

is a wholeS! family of almost Kahler structures compatible to the mewid-inally, since for
a primary Kodaira surfack, = 2, it follows from Proposition 1 that each Hermitian, almost
Kahler metric has exactly orfg family of compatible almost Khler forms.

To prove (b2) note first that ifM, J) is a blow-up of a primary Kodaira surface, thgn# 0
in this case. Leyy be a Hermitian metric and let be a real, self-dual, harmonic form with
respect tay. As above, sincé, = 2py, it follows thatw = Re(f), wherep is a holomorphic
(2, 0) form. Sincec; # 0, 8 must vanish at some point dvi and so does&. Therefore, for any
Hermitian metric there are no harmonic, self-dual, everywhere non-degenerate forms.

Let us now consider the case even. In this casé, = 2py + 1, so for any Hermitian
metricg, the space of real parts of holomorpli; 0) forms is strictly contained in the space
of all self-dual, harmonic forms. Lei denote the (unique) self-dual, harmonic form which has
trace equal to 1 and is orthogonal, with respect to the cup product, to the space of real parts
of holomorphic(2, 0) forms. This form is non-degenerate everywheredbrand hence for a
conformal metric tag this form will define an almost KFiler structure. The statements from
(al) and (a2) follow from Propositions 5 and 6, respectively.]

Remark 1. It would be nice to complete part (a) in Theorem 1 with a statement about the
possible number of almostdfiler structures compatible to an arbitrary Hermitian metric (non-
Kahler and not conformally &tiler). Proposition 4 shows that there are some Hermitian, non-
K&hler metrics with a unique, up to sign, almostt{ér structure. However, we do not know a
complete answer to this problem yet.
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4. Yamabe and fundamental constants of Hermitian surfaces

TheYamabe constanY (c), of the conformal class on a compact 4-manifoli is defined
to be

- INELA
Y() =inf { T =—oF
9<e vV fM dug

wheresy is the scalar curvature of the Riemannian megrendduy denotes it volume form.

It was proved by R. Shoen [25] that each conformal ctassntains metrics of constant scalar
curvature which realize the infimum in the above definition and, for this reason, these metrics are
also referred a¥amabe metricdVe shall say thatM, c) is of positive (resp. zero or negative)
typeif Y(c) is positive (resp. zero or negative).

Itis aremarkable fact that the existence of metrics with positive scalar curvature on a compact
4-manifold leads to important information about the differentiable structure of the manifold. In
particular, all Seiberg—Witten invariants must vanish. This was successfully used by C. LeBrun
to prove that on a compact complex surfabé, J) with even first Betti number the existence
of conformal classes (not necessarily compatible wijhof positive type forcegM, J) to
have negative Kodaira dimension, i.e., to be either a rational surface, or a blow up of a ruled
surface [17]. Considering only the conformal classes of Hermitian metrics, LeBrun’s result was
previously observed by several other authors [28, 27, 2]. The main idea dealing with Hermitian
conformal classes is to use the Gauduchon'’s vanishing theorem, as it is explained below.

Let(M, J) be acompact complex surface anddbe a conformal class of Hermitian metrics
on M. For any metriay € ¢ we denote byiy the Hermitian scalar curvaturef (g, J), which
is defined to be the trace of the Ricci form of the Chern connedtiofi3], i.e., we have

El

ug = 2<RC(F)’ F)g,

whereRC is the curvature oV ¢ andF, as usually, is the Kfiler form of(g, J). Using the relation
between the Chern connecti®¥ and the Riemannian connecti® given by (cf. [13,27])

VSY = VxY = 20(Y)X — 20(IX)JY + 39(X, V)0,
one can easily see (cf.[13]) tha§ andsy are related by
Ug = Sy — 860 + 31013 )

The eccentricity functiorfo(g) of a metricg in cis the positive function determined by the
propertyg = do/fo(g), whereqp is the standard metric of Gauduchonogiving M a total
volume 1 (different normalization than [6]). Note that a metyiis standard if and only if the
corresponding functioriy is a positive constant.

Thefundamental constant @/, J, g) of a compact Hermitian surface we will define to be
(compare with [6]):

C(M. 3.9 = [ fo(@uydus
M
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Note thatC(M, J, g) does not depend on the choicegE ¢ and is a conformal invariant of
cequal toC(M, J, gog) = fM Ug, ditg,, SO We can denote it just &M, J, ¢). It follows from
(2) thath Sgo dieg, < C(M, J, ©) which gives the estimate

Y(©) < C(M, J, 0, 3)

with equality in (3) if and only ifgo is a Yamabe—khler metric:

The fundamental consta@t(M, J, ) is closely related to the complex geometry(bf, J)
in view of the following vanishing theorems of Gauduchon [12]:

Denote byP,, (respQ) the dimension of the space of holomorphic sectionk 8f" (resp.
of K=®M). Then we have:

@CM,J,¢c)>0=— P, =0,Ym > 0;

(b)C(M, J,c) <0—=— Qn=0,Vm > 0;

©)CM, J,c)=0—= Py=QnandPy, €1,0,Vvm > 0.

In particular, for any positive conformal classthe estimate (3) give€(M, J,c) > 0,
hence such a surface has to be of negative Kodaira dimension.

It is clear that except for the case whBp = Qn, = 0, Ym > 0 (some surfaces of negative
Kodaira dimension), the sign @ (M, J, ¢) is independent of (see [6]). We also note that
the existence of a Hermitian conformal claswsith C(M, J, ¢) = 0 does imply the existence
of a metricg e c of vanishing Hermitian scalar curvaturg [6, Corollary 1.9], hence the
Ricci form R°(F) (which represents up to multiplication withiar the first real Chern class of
(M, J)) is anti-self-dual. In particular, we haeg < 0 with equality if and only ifc; = 0. So,
on any complex surfaceM, J) with Euler numbery and signature satisfying 2 + 30 > 0
(or 2y + 30 = 0 andc; # 0), the sign ofC(M, J, ¢) is also independent on the Hermitian
conformal class.

On the other hand, for a compact almosattér manifold(M, g, J, @) we have another
estimate for the Yamabe constant, coming from the basic inequality

/ Sgdug < 4ncy - [o], (4)
M
with equality if and only if the structure isdiler. It follows from (4) that
C1 - [w]
Y(©) < 4V2r 5
NoRo)| ©

with equality if and only ifg is a Yamabe—hler metric.
To prove (4) one can consider tliest canonical connectioW?, defined by Lichnerowicz
in [20] to be

VRY = VxY — 2J(Vx )(Y).

SinceV? preservesl, its Ricci formy© represents2cy, so using the above relation we obtain
in the almost Kahlerian case tha°, ) = 1s + |V JJ? (cf. [9]) which proves (4).

Now we shall use Theorem 1 to compare (3) and (5) on some Hermitian surfaces. We start
with the following proposition, due to LeBrun in a more general setting [18]:
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Proposition 7. Let(M, g, J, F) be a Hermitian surface withjeeven and lei be a harmonic
self-dual form on M of non-negative trace. Then the following inequality holds

2]
s—d
V2
where s is the scalar curvaturéu is the volume form angd | is the pointwise horm determined
by the metric g.

w < 4rcy - [o],

Proof. According to Corollary 2, we have two cases to consider.

Case 1 The formw is non-degenerate everywhereldn Denote byu the (strictly) positive
function given byw? = u*F?, or, equivalentlys/2u? = |w|. The metricg’ = u?g is an
associated metric for the symplectic fown The almost complex structure induceddpyand
w is homotopic toJ, hence it has the same real first Chern clas3.dssing (4), we get:

/ sy dug < 4ncy - [o]. (6)

Standard formulas for a conformal change of megfie- ug give

Sy = u_zsg + 6u‘3Agu,

From these we obtain
dig = [s9 a4 6 [ 1du2dug > [s29d
Sy Qug = Sgﬁ Hg + | U|g Hg = Sgﬁ Hgs (7)

and the proof is finished for the Case 1.

Case 2 The formw is the real part of a holomorphi@, 0) form. In this case we have
¢ - [w] = 0, since on a complex surfacecan be represented by(a 1) form (the Ricci form
of a Hermitian connection). Considey a harmonic, self-dual form, nowhere degenerate on
M and denote

wy = wo +tw,

fort > 0. Thenw; are non-degenerate, harmonic self-dual forms fortarsp we can apply
Case 1 to them. It follows
Jo|
V2
Taking into account that; - [w] = 0, this becomes
lwo + tw
S———du < 4rcy - [wol,
/ \/é 2 1 [ 0]
and, after dividing by,
S (lwol® | 2(w,w0) | 5\2 47
_ < —C - .
[ S5+ H ) g < e o
Taking the limitt — oo, we obtain the conclusion in this case tool]

S du <4ncy - [ax].
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Remark 2. A more careful application of relation (7) implies the inequality

[ solladug +6 [ |ddol®) 2 dusg < 4rv2es - [al,

for any Hermitian metrig and any harmonic, self-dual form of non-negative trace. As a
conseguence, we see that on a scalar-flat Hermitian surfacbyeétien, all holomorphi¢2, 0)
forms have constant length.

Corollary 3. Let(M, g, J, F) be a Hermitian surface with;beven and non-positive funda-
mental constant. The following inequality halds

/ s?du > 3272(c)?,
where ¢ denotes the harmoniself-dual part of g.

Proof. Apply Proposition 7 to the harmonic, self-dual foemwhich satisfies» = —c;. The
fact thatw has non-negative trace holds because of the sign assumption on the fundamental
constant. We get

421 (cH)? < / —slw|du < f Isllw| dp.

Schwarz inequality implies

427 (ch? < (/szdu)%(/ |a)|2d,u,>%.
Sincew is the harmonic representative of the clagswe have
[ oPdu =t
and the conclusion follows. O

As already mentioned, on a rational surfadé, J) with cf > 0, the sign ofC(M, J, ¢)
does not depend on the Hermitian conformal claskherefore it is always positive, since any
rational surface admits adfiler metric of positive total scalar curvature (cf. [28, 10]). With this
observation and Proposition 7 in hand, we prove the following

Proposition 8. Let(M, J) be arational surface withic) 0. Thenfor any Hermitian conformal
class c on M we have

Y(©) < 4m,/2(c))2 < C(M, J,0), (8)

where ¢ denotes the harmonic self-dual part gf Moreoverequality in the right-hand side
holds if and only if ¢ contains adhler metrig while equality in the left-hand side holds if and
only if c contains a Yamabe-aKler metric.
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Proof. Let g € ¢ be an almost Khler metric, with fundamental 2-forrma given byw =

F + Re(a), whereF denotes the fundamental 2-form of the standard mggramde is a(2, 0)

form. The almost complex structure given andw is homotopic to the complex structude
and hence they induce the same first Chern ctasfenoting byy = R°(F) the (1, 1)-Ricci

form of (J, go), we have

C-lo] 1 Jyrre _ 9)
ST Mol ~ 2t [ wne
1 fM ugo d,ugo

War [ dug, + %y IRe@)2dpg,

1
< —C(M, J,c
427 ( )

with equality if and only if Réx) vanishes, i.egp is a Kédhler metric. On the other hand, since
b*(M) = 1 andc; - [w] > 0 ([26,21]), we have thatc;)™ = Aw, for some positive real
constant.. Hence

C]_.[C()] _ ol lol = +1\2
7[(0].[0)]_ = A/[o].[o] =4/ (c])?,

which after a substitution in (9) completes the proof of the right-hand side inequality of 8. The
other inequality is a consequence of Proposition 7 and the above observation.

Corollary 4. Let(M, J) be as in Propositior8. Then for any Hermitian conformal class ¢
the fundamental constant(®, J, ¢) satisfies

C(M, J,c) > 4m\/2¢2

with equality if and only if ¢ contains adhler metric and the first Chern class has a self-dual
representative with respect to c.

Corollary 5. For any Hermitian conformal class ¢ diP? the Yamabe constant(¥) and the
fundamental constant @/, J, ¢) satisfy

Y(c) < 12v/27r < C(M, J, g),

with equality in the right-hand side if and only if ¢ contains atfer metric and with equality
in the left-hand side if and only if ¢ is conformally equivalent to the class of the Fubini-Study
metric.

Proof. Since forCP?the negative second Betti numlervanishes we have that4/2(c )2 =
4r./2¢3 = 12¢/27. The case of equality in the left hand side of the inequality follows from the
observation that the onlyadiler metric of constant scalar curvature@®? is the Fubini—Study
metric. O
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Remark 3. The inequalityY(g) < 1227 was proved by LeBrun in [18] for an arbitrary
conformal class o€ P?, investigating the “size” of the zero set of a self-dual form. As was
noted there ([18, Corollary 3]), this estimate can be used to give an alternative proof of a result
of Poon on the uniqueness of the self-dual structure of positive ty@P8nOur Corollary 5,

the fact that any Hermitian self-dual structure®©®? is of positive type (see [2]) and LeBrun’s
arguments give a simple proof in the framework of Hermitian geometry of the following:

Corollary 6. [2] Any self-dual Hermitian conformal structure @P? is equivalent to the
standard one.

5. Conformal transformations of almost K&hler metrics on 4-manifolds

D. Blair asked in [8] the following questiorgiven a compact almostatler manifold
(M2, g, J, w) and ¢ an isometry of the almostakler metrig is ¢ necessarily a symplecto-
morphism(or anti-symplectomorphisy#

This is a particular case of our Question 1 and we use the results proven so far to give some
answers in dimension 4. In fact, in our resultwill be a conformal transformation of the
almost Kahler metric, i.e., the pull-back metritg is conformal tog. We first remark that
Blair's question has an affirmative answer for compact 4-manifolds itk= 1, as an easy
consequence of Proposition 1. From the same Proposition 1, our next partial positive result also
follows easily.

Proposition9. Let(M*4, g, J, w) be acompact almostiler manifold and lep be a conformal
transformation of ghomotopic to the identity inside the group of diffeomorphisms of M. Then
¢ is an automorphism of the almoséKler structure(g, J, ).

Proof. By assumptionsp*w is cohomologous t@ and¢*g is conformal tay. Sinceg*g is an
almost Kahler metric for the symplectic forgy*w, it follows thatg € CAM , N CAM 4-,,. By
Proposition 1 (a), this may hold only f*w = w, S0¢ is a symplectomorphism. To conclude
that¢ is also an isometry just note that a symplectic form cannot have two distinct, conformal
associated metrics.

Remark 4. Note that the above result is true in any dimensions if we asspirttiebe an
isometry in the identity component of the diffeomorphism group. It can be considered as a
slight generalization of the well-known results of Lichnerowicz [19] about the connected group
of isometries of a compactagiler manifold.

The next result appears as a consequence of Theorem 1.

Theorem 2. Let (M4, g, J, w) be a compact Khler non-hyper-Kahler surface. Ifg is a
conformal transformation of the &hler metric theng is a symplectomorphism or an anti-
symplectomorphism.

Proof. Let ¢ be a positive conformal isometry. Suppose thas not an isometry. Thep*g
is an almost i@hler metric in the conformal class @f Now, according to Theorem 1, (a2), we
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have that there is a who family of almost Kahler structures with respect to the metig.
Using ¢, we can induce &!'-family of almost Kahler structures with respect ¢ which
contradicts with Theorem 1, (al). Sbmust be an isometry. We use now Theorem 1, (al) one
more time to complete the proof. O

Remark 5. The above result is closely related to [23, Theorem 5.3].

Now we will give examples when Blair's question has a negative answer. However, all such
examples that we know so far are very special (all have= 0, for instance). It might be
possible that in most instances isometries of almail& metrics do indeed preserve (up to
sign) the symplectic form.

Remark 6. The conclusion of Theorem 2 is no longer true Tdr= (S')*. Take the standard
metric and consider thediler formw = d6, A d6, + dO3 A dbs. Let ¢ be the diffeomorphism

which acts as identity on the first and third components and switches the second and the fourth.
This is an isometry of the metric, but is clearly not&rsymplectomorphism. Hence Blair’s
question has a negative answer Tot. Fore some special K3 surfaces such isometries (with
respect to a hyper-#tiler metric) have been shown to exist by Alekseevsky and Graev [1]. Non-
Kahler examples of this type can be givenh(see [4]) and on primary Kodaira surfaces,
which areT2-bundles ovefl 2.

Remark 7. It may really happen that an isometry of an almosthier metric is an anti-
symplectomorphism, as the following example shows:

Let M4 = S x S? with the standard product metric. This metric ialdér with respect to
the formw = w1 — wy, the diffeomorphism taking one factor into the other is an isometry, but
it is an anti-symplectomorphism of the form
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