The Greek Letters

Chapter 17

Example (Page 365)

- A bank has sold for $\$ 300,000$ a European call option on 100,000 shares of a non-dividend-paying stock (the price of the option per share, "textbook style", is therefore \$3.00).
- $S_{0}=49, K=50, r=5 \%, \sigma=20 \%, T=20$ weeks, $\mu=13 \%$
- (Note that even though the price of the option does not depend on μ, we list it here because it can impact the effectiveness of the hedge)
- The Black-Scholes-Merton value of the option is $\$ 240,000$ (or $\$ 2.40$ for an option on one share of the underlying stock).
- How does the bank hedge its risk?

Naked \& Covered Positions

- Naked position:
- One strategy is to simply do nothing: taking no action and remaining exposed to the option risk.
- In this example, since the firm wrote/sold the call option, it hopes that the stock remains below the strike price (\$50) so that the option doesn't get exercised by the other party and the firm keeps the premium (price of the call it received originally) in full.
- But if the stock rises to, say, $\$ 60$, the firm loses (60-50)x100,000: a loss of $\$ 1,000,000$ is much more than the $\$ 300,000$ received before.
- Covered position:
- The firm can instead buy 100,000 shares today in anticipation of having to deliver them in the future if the stock rises.
- If the stock declines, however, the option is not exercised but the stock position is hurt: if the stock goes down to $\$ 40$, the loss is $(49-40) \times 100,000=\$ 900,000$.

Stop-Loss Strategy

- The stop-loss strategy is designed to ensure that the firm owns the stock if the option closes in-themoney and does not own the stock if the option closes out-of-the-money.
- The stop-loss strategy involves:
- Buying 100,000 shares as soon as the stock price reaches \$50.
- Selling 100,000 shares as soon as the stock price falls below $\$ 50$.

Stop-Loss Strategy continued

However, repeated transactions (costly) and the fact that you will always buy at $\mathrm{K}+\varepsilon$ and sell at $\mathrm{K}-\varepsilon$ makes this strategy not a very viable one.

Delta (See Figure 17.2, page 369)

- Delta (Δ) is the rate of change of the option price with respect to the underlying

Hedge

- Trader would be hedged with the position:
- Short/wrote 1000 options (each on one share)
- buy 600 shares
- Gain/loss on the option position is offset by loss/gain on stock position
- Delta changes as stock price changes and time passes.
- Hedge position must therefore be rebalanced often, an example of dynamic hedging.

Delta Hedging

- Delta hedging involves maintaining a delta neutral portfolio: a position with a delta of zero.
- The delta of a European call on a non-dividend-paying stock is $N\left(d_{1}\right)$
- The delta of a European put on the stock is $\left[N\left(d_{1}\right)-1\right]$ or equivalently: $-N\left(-d_{1}\right)$.

First Scenario for the Example:

 Table 17.2 page 372| Week | Stock
 price | Delta | Shares
 purchased | Cost
 $(\$ 000)$ | Cumulative
 Cost (\$000) | Interest
 $(\$ 000)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 49.00 | 0.522 | 52,200 | $2,557.8$ | $2,557.8$ | 2.5 |
| 1 | 48.12 | 0.458 | $(6,400)$ | (308.0) | $2,252.3$ | 2.2 |
| 2 | 47.37 | 0.400 | $(5,800)$ | (274.7) | $1,979.8$ | 1.9 |
| $\ldots \ldots$ | $\ldots \ldots \ldots$ | $\ldots \ldots$ |
| 19 | 55.87 | 1.000 | 1,000 | 55.9 | $5,258.2$ | 5.1 |
| 20 | 57.25 | 1.000 | 0 | 0 | 5263.3 | |

First Scenario results

- At the end, the option is in-the-money.
- The buyer of the call option exercises it and pays the strike of 50 per share on the 100,000 shares held by the firm.
- This revenue of $\$ 5,000,000$ partially offsets the cumulative cost of $\$ 5,263,300$ and leaves a net cost of $\$ 263,300$.

Second Scenario for the Example

 Table 17.3 page 373| Week | Stock
 price | Delta | Shares
 purchased | Cost
 $(\$ 000)$ | Cumulative
 Cost (\$000) | Interest
 $(\$ 000)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 49.00 | 0.522 | 52,200 | $2,557.8$ | $2,557.8$ | 2.5 |
| 1 | 49.75 | 0.568 | 4,600 | 228.9 | $2,789.2$ | 2.7 |
| 2 | 52.00 | 0.705 | 13,700 | 712.4 | $3,504.3$ | 3.4 |
| $\ldots \ldots$ | $\ldots \ldots .$. | $\ldots \ldots$ | $\ldots \ldots .$. | $\ldots \ldots .$. | $\ldots \ldots .$. | $\ldots \ldots$ |
| 19 | 46.63 | 0.007 | $(17,600)$ | (820.7) | 290.0 | 0.3 |
| 20 | 48.12 | 0.000 | (700) | (33.7) | 256.6 | |

Second Scenario results

- At the end, the option is out-of-the-money.
- The buyer of the call option does not exercise it and nothing happens on that front.
- The delta having gone to zero, the firm has no shares left.
- The net cumulative cost of hedging is $\$ 256,600$.

Comments on dynamic hedging

- Since by hedging the short/written call the firm was essentially synthetically replicating a long position in the option, the (PV of the) cost of the replication should be close to the Black-Scholes price of the call: $\$ 240,000$.
- They differ a little in reality because the hedge was rebalanced once a week only, instead of continuously.
- Also, in reality, volatility may not be constant, and there are some transaction costs.

Delta of a Portfolio

- The concept of delta is not limited to one security.
- The delta of a portfolio of options or derivatives dependent on a single asset with price S is given by $\Delta_{\Pi}=\Delta \Pi / \Delta S$.
- If a portfolio of n options consists of a quantity q_{i} of option i, the delta of the portfolio is given by:

$$
\Delta_{\Pi}=\sum_{i=1}^{n} q_{i} \Delta_{i}
$$

Delta of a Portfolio: example

- Suppose a bank has the following 3 option positions:
- A long position in 100,000 call options with a delta of 0.533 for each.
- A short position in 200,000 call options with a delta of 0.468 for each.
- A short position in 50,000 put options with a delta of -0.508 for each.
- The delta of the whole portfolio is:
- $\Delta_{\Pi}=100,000 \times 0.533-200,000 \times 0.468-50,000 \times(-0.508)$
- $\Delta_{\Pi}=-14,900$
- The portfolio can thus be made delta neutral by buying 14,900 shares of the underlying stock.
- It also means that when the stock goes up by $\$ 1$, the portfolio goes down by $\$ 14,900$.

Theta

- The Theta (Θ) of a derivative (or portfolio of derivatives) is the rate of change of its value with respect to the passage of time.
- The theta of a call or put is usually negative. This means that, if time passes with the price of the underlying asset and its volatility remaining the same, the value of a long call or put option declines.
- It is sometimes referred to as the time decay of the option.

Theta

- For European options on a non-dividend-paying stock, it can be shown from the Black-Scholes formulas that:

$$
\begin{aligned}
& \Theta(\text { call })=-\frac{S_{0} N^{\prime}\left(d_{1}\right) \sigma}{2 \sqrt{T}}-r K e^{-r T} N\left(d_{2}\right) \\
& \text { with } N^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \\
& \Theta(\text { put })=-\frac{S_{0} N^{\prime}\left(d_{1}\right) \sigma}{2 \sqrt{T}}+r K e^{-r T} N\left(-d_{2}\right)
\end{aligned}
$$

Theta for Call Option: $K=50, \sigma=25 \%, r=5 \%, T=1$

 from the formula is annual. For example, for $S=50, \theta=-3.6252$ and so we have $\theta=-3.6252 / 365=-0.01$ per calendar day.

Gamma

- Gamma (Γ) is the rate of change of delta (Δ) with respect to the price of the underlying asset, so it is the "change of the change".
- Gamma is greatest for options that are close to being at-the-money since this is where the slope, delta, changes the most.
- If Gamma is high, then delta changes rapidly.
- If Gamma is low, then delta changes slowly.
- Gamma is the second derivative of the option price with respect to the stock: it can be stated as $\Gamma=d^{2} \mathrm{C} / \mathrm{dS}^{2}$ or $\Gamma=\mathrm{d}^{2} \mathrm{P} / \mathrm{dS}^{2}$.

Gamma

- For European options on a non-dividend-paying stock, it can be shown from the Black-Scholes formulas that:

$$
\begin{aligned}
& \Gamma=\frac{N^{\prime}\left(d_{1}\right)}{S_{0} \sigma \sqrt{T}} \\
& \text { with } N^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
\end{aligned}
$$

- The formula is valid for both call and put options.

Gamma for Call or Put Option: $K=50, \sigma=25 \%, r=5 \%, T=1$

Gamma Addresses Delta Hedging Errors Caused By Curvature

(Figure 17.7, page 377)

Interpretation of Gamma

- For a delta neutral portfolio,

$$
\Delta \Pi \approx \Theta \Delta t+1 / 2 \Gamma \Delta S^{2}
$$

Positive Gamma

Negative Gamma

Relationship Between Delta, Gamma, and Theta

For a portfolio Π of derivatives on a non-dividendpaying stock, we have:
$\Theta+r S_{0} \Delta+\frac{1}{2} \sigma^{2} S_{0}^{2} \Gamma=r \Pi$
or $\frac{\partial C}{\partial t}+r S_{0} \frac{\partial C}{\partial S}+\frac{1}{2} \sigma^{2} S_{0}^{2} \frac{\partial^{2} C}{\partial S^{2}}=r C$ if the portfolio consists of one Call only

Solving this partial differential equation for C (or P if a Put) yields the Black-Scholes pricing equation, by the way.

How to make a portfolio "Gamma Neutral"

- Recall that, just like for any other Greek (Delta,...), the Gamma of a portfolio Π is given by: $\Gamma_{\Pi}=n_{1} \Gamma_{1}+n_{2} \Gamma_{2}+n_{3} \Gamma_{3} \ldots$
- One can thus make the total Gamma equal to zero with the appropriate addition of a certain number of options with a certain Gamma.
- As an example, assume your position is currently Delta neutral ($\Delta=0$) but that $\Gamma=-3,000$. You however find a call option with $\Delta_{C}=0.62$ and $\Gamma_{C}=1.50$
- You need $\Gamma_{\Pi}=(1) \Gamma_{\text {exisiting position }}+n_{C} \Gamma_{C}=0$ i.e. need $-3,000+n_{C}(1.50)=0$.
- Buy $n_{C}=3,000 / 1.5=\mathbf{2 , 0 0 0}$ Call options and now have a Gamma of zero.
- The only issue is that the addition of the call options shifted your delta.
- Your new portfolio delta is $\Delta_{\Pi}=(1) 0+2,000 \Delta_{C}=2,000(0.62)=1,240$.
- Therefore 1,240 shares of the underlying asset must be sold from the portfolio in order to keep it delta neutral. It is now Delta-Gamma neutral.

Vega (not an actual Greek letter, but it sounds like one: good enough)

- Vega (v) is the rate of change of the value of a derivative (or a derivatives portfolio) with respect to the volatility of the underlying asset.
- Vega is an important measure because in practice, the volatility σ is not constant and changes over time.
- If Vega is highly positive or negative, the portfolio's value is very sensitive to small changes in volatility.
- If Vega is close to zero, volatility changes have almost no impact on the value of the portfolio.

Vega

- For European options on a non-dividend-paying stock, it can be shown from the Black-Scholes formulas that:

$$
\begin{aligned}
& v=S_{0} \sqrt{T} N^{\prime}\left(d_{1}\right) \\
& \text { with } N^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
\end{aligned}
$$

- The formula is valid for both call and put options.

Vega for a Call or Put Option: $K=50, \sigma=\mathbf{2 5 \%}, r=5 \%, T=1$

Managing Delta, Gamma, \& Vega risk all at once

- We know that Delta can be changed by taking a position in the underlying asset.
- We also know that to adjust Gamma and Vega, it is necessary to take a position in an option or other derivative.
- However, if only one other derivative is added, either the Gamma risk or the Vega risk will be canceled, but not both at the same time (except by some coincidence).
- So we need to add two new derivatives to hedge all risks.

Example if we don't

	Delta	Gamma	Vega
Portfolio	0	-5000	-8000
Option 1	0.6	0.5	2.0
Option 2	0.5	0.8	1.2

What position in option 1 and the underlying asset will make the portfolio delta and gamma neutral?
Answer: Long 10,000 options, short 6,000 of the asset.

What position in option 1 and the underlying asset will make the portfolio delta and vega neutral?
Answer: Long 4,000 options, short 2,400 of the asset.

Example if we do

	Delta	Gamma	Vega
Portfolio	0	-5000	-8000
Option 1	0.6	0.5	2.0
Option 2	0.5	0.8	1.2

What position in option 1, option 2, and the asset will make the portfolio delta, gamma, and vega neutral all at once?

We solve

$$
\begin{aligned}
& -5000+0.5 w_{1}+0.8 w_{2}=0 \\
& -8000+2.0 w_{1}+1.2 w_{2}=0
\end{aligned}
$$

to get $w_{1}=400$ and $w_{2}=6,000$.
We therefore require long positions of 400 and 6,000 in option 1 and option 2.
However, because these additions result in an incremental positive delta of $400(0.6)+6,000(0.5)=3,240$, we also need to take a short position of 3,240 in the asset in order to also make the portfolio delta neutral.

Rho

- Rho is the rate of change of the value of a derivative with respect to the interest rate.
- It is usually small and not a big issue in practice, unless the option is deep in-the-money and has a long horizon (discounting a larger cash flow over a longer horizon is more relevant then).

Hedging in Practice

- Traders usually ensure that their portfolios are delta-neutral at least once a day.
- Whenever the opportunity arises, they improve gamma and vega.
- As the portfolio becomes larger, hedging becomes less expensive since the trading cost per option goes down.

Scenario Analysis

- In addition to monitoring risks such as delta, gamma, and vega, option traders often also conduct a scenario analysis.
- A scenario analysis involves computing the gains and losses on the portfolio over a specified period of time under a variety of different scenarios.
- Often the two main sources of risk looked as variables (the scenarios) are the underlying asset price and volatility.

Greek Letters for European Options on an Asset that Provides a (dividend)
 Yield at Rate \boldsymbol{q} (Table 17.6, page 386)

Greek Letter	$\underline{\text { Call Option }}$	$\underline{\text { Put Option }}$
Delta	$e^{-q T} N\left(d_{1}\right)$	$e^{-q T}\left[N\left(d_{1}\right)-1\right]$
Gamma	$\frac{N^{\prime}\left(d_{1}\right) e^{-q T}}{S_{0} \sigma \sqrt{T}}$	$\frac{N^{\prime}\left(d_{1}\right) e^{-q T}}{S_{0} \sigma \sqrt{T}}$
Theta	$-S_{0} N^{\prime}\left(d_{1}\right) \sigma e^{-q T} /(2 \sqrt{T})$ $+q S_{0} N\left(d_{1}\right) e^{-q T}-r K e^{-r T} N\left(d_{2}\right)$	$-S_{0} N^{\prime}\left(d_{1}\right) \sigma e^{-q T}(2 \sqrt{T})$
Vega	$\left.S_{0} \sqrt{T} N^{\prime}\left(d_{1}\right) e^{-q T}\right)$	$S_{0} \sqrt{T} N^{\prime}\left(d_{1}\right) e^{-q T}+r K e^{-q T} N\left(-d_{2}\right)$
Rho	$K T e^{-r T} N\left(d_{2}\right)$	$-K T e^{-r T} N\left(-d_{2}\right)$

Using Futures for Delta Hedging

- The delta of a futures contract on an asset paying a yield at rate q is $e^{(r-q) T}$, since we know that $F=S e^{(r-q) T}$.
- The position required in futures for delta hedging (instead of using the spot asset) is therefore $e^{-(r-q) T}$ times the position required in the corresponding spot asset.

Example of Using Futures for Delta Hedging (instead of the spot)

- A portfolio of currency options held by a US bank can be made delta neutral with a short position of 458,000 pounds sterling (of the spot (currency) asset, if it were used).
- If the US riskless rate is 4% and the UK rate 7%, hedging for 9 months using a short position in futures contracts instead of shorting the spot currency would require shorting:
$e^{-(0.04-0.07) \times 9 / 12} \times 458,000$ or $£ 468,422$ in futures contracts.
- Since each futures contract is for $£ 62,500$ the number of contracts to be shorted is $468,422 / 62,500=7.49$ contracts therefore rounded to 7 contracts.

Hedging vs. Creation of an Option Synthetically

- When we are hedging we take positions that offset delta, gamma, vega, etc...
- When we create an option synthetically we take positions that match delta, gamma, vega, etc...

Portfolio Insurance

- In October of 1987, many portfolio managers attempted to create a put option on a portfolio synthetically.
- This involves initially selling enough of the portfolio (or of index futures) to match the Δ of the put option.

Portfolio Insurance (continued)

- As the value of the portfolio increases, the Δ of the put becomes less negative and some of the original portfolio is repurchased.
- As the value of the portfolio decreases, the Δ of the put becomes more negative and more of the portfolio must be sold.
- The strategy did not work well on October 19, 1987 because since everyone was doing the same thing, liquidity became an issue.
- Additionally, investors that anticipated the portfolio insurers reaction sold their positions as well, exacerbating the problem and precipitating the price decrease, making the crash worse.

