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Abstract In this paper we study the null-controllability of a beam equa-
tion with hinged ends and structural damping, the damping depending on a
positive parameter. We prove that this system is exactly null controllable in
arbitrarily small time. This result is proven using a combination of Ingham-
type inequalities, adapted for complex frequencies, and exponential decay on
various frequency bands. We then let the damping parameter tend to zero
and we recover an earlier null-controllability result for the undamped beam
equation.

1 Introduction and statement of main results

Let T > 0, and let ω be an open subset of (0, 1). Let ρ > 0. Consider the
controllability problem: given

u(x, 0) = u0(x) ∈ H2(0, 1) ∩H1
0 (0, 1), ut(x, 0) = u1(x) ∈ L2(0, 1),

can we find a control function f ∈ L2(ω× (0, T )) such that the solution u of
the structurally damped beam equation





utt + uxxxx − ρuxxt = χωf in (0, 1)× (0, T )
u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0 in (0, T )
u(x, 0) = u0(x), ut(x, 0) = u1(x), in (0, 1), (0)
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satisfies
u(x, T ) = ut(x, T ) = 0, a.e.x ∈ (0, 1)? (1)

The system (0) with f = 0 is the one-dimensional version of the mathe-
matical model for linear elastic systems with structural damping introduced
by Chen and Russell in [2]. Null-controllability in time for arbitrarily small T
for the undamped case (ρ = 0)was proven in [14]. Various results for bound-
ary control in the undamped case can be found in Zuazua’s survey in [8]. For
a study of optimal boundary controllability of the damped plate equation,
see [12]. Recently Lasiecka and Triggiani [6] studied the null-controllability
of the abstract equation:

wtt + Sw + ρSαwt = u, w(0) = w0, wt(0) = w1, ρ > 0, α ∈ [1/2, 1].

Here S is a strictly positive, self-adjoint unbounded operator with compact
resolvent, and the control u is assumed to be distributed throughout (0, 1).
Although the operator S is more general than operator ∆2 appearing in our
case, the authors did not assume that the control u is confined to a proper
subset ω ⊂ (0, 1) as we do here; this makes our problem harder because we
cannot use Bessel’s inequality as they do. Also, their controllability is not
uniform in ρ. Hansen [3] proved an estimate on functions biorthogonal to a
certain family of exponential functions on [0, T ]. As an application, he stud-
ied the null-controllability of a damped vibrating rectangular plate equation
subject to boundary control on one side, with ρ < 2, but his methods will
also apply to the vibrating beam equation with internal damping to prove
boundary null-controllability in time T for any ρ < 2. However, his proof,
which uses a compactness argument, will not yield estimates on the control
that are uniform in ρ. The main purpose of this paper is to prove null-
controllability of the system in Eq.(0) uniformly with respect to ρ for small
ρ. This permits us to show that as ρ→0, we recover existing controllability
results for the undamped beam equation with hinged ends [14]. We are now
in a position to state our main results.

Theorem 1 Fix T > 0, ρ > 0. Assume ρ 6= 2. For any pair of initial
conditions (u0, u1), there exists a function fρ ∈ L2(ω × (0, T )) such that
u(x, T ) = ut(x, T ) = 0. Also,

∫ T

0

∫

ω
|fρ|2dxdt ≤ C(‖u0‖2

H2(0,1) + ‖u1‖2
L2(0,1)),
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with C independent of u0, u1. Furthermore, for ρ < 2, the constant C can be
chosen independent of ρ.

We remark that the restriction ρ 6= 2 is probably an artifact of the framework
of [6] that we adopt here.

The following theorem follows from Theorem 1 by a standard argument.

Theorem 2 Fix T > 0 and fix initial conditions u0, u1. Let fρ ∈ L2(ω ×
(0, T )) be the control function associated with Eq.0. Then fρ converges in
L2(ω× (0, T )) to f0, where f0 is a control function for the unperturbed beam
equation.

Convergence results analogous to Theorem 2 have been proven in various
physical settings [10],[11], and [9].

We now give a brief outline of the proof of Theorem 1. For ρ bounded away
from zero, we use a generalization of Bessel’s inequality due to Lebeau-Zuazua
[7] together with exponential decay. For ρ close to zero, the exponential decay
is not uniform as ρ→0, and therefore we need a more complicated argument
to achieve a bound on ‖fρ‖ which is uniform in ρ. For high frequencies,
we still use the Lebeau-Zuazua estimate together with exponential decay,
while for low frequencies we use Ingham-type inequalities. Our adaptation of
Ingham’s argument to complex frequencies is, to the best of our knowledge,
new, and might be of independent interest. For related lower bounds on
trigonometric polynomials, see [13],[5] and references therein.

The remainder of this paper is organized as follows. In the next section,
we will recast the problem in the notation of [6]. In Section 3, we will prove
Theorem 1 for ρ > 2. In Section 4, we will prove the theorem for 0 < ρ < 2.
Theorem 2 then follows from an essentially well known argument which is
given in the appendix for the reader’s convenience.

2 Preliminaries

In what follows we use the framework of [6], which applies for all ρ 6= 2.. Thus
let H = L2(0, 1)×L2(0, 1), with Hilbert space norm ‖y‖2

H =
∫ 1
0 |y1|2+|y2|2dx.

Solving Eq.(0) is equivalent to solving the system

ỹt = Ãỹ + χωB̃f, ỹ(0) = y0, (2)
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with

ỹ =
1

r1 − r2

(
−r2 −1
r1 1

) (
−∆u
ut

)
,

Ã =

(
r1∆ 0
0 r2∆

)
, Ã∗ =

(
r1∆ 0
0 r2∆

)
,

B̃ =
1

r2 − r1

(I,−I)T , B̃∗((y1, y2)
T ) =

1

r1 − r2

(y2 − y1),

and
r1,2 = (ρ±

√
ρ2 − 4)/2. (3)

The exact null-controllability of Eq.(0) in the original dynamics is equivalent
to the exact null-controllability in H within the class of L2((0, T ), L2(ω))
controls of Eq. 2 (see [LT], p.46-48), provided ρ 6= 2. The associated adjoint
equation is:

−wt = Ã∗w, w(T ) = wT. (4)

Also set ‖v‖2
ω =

∫
ω |v|2dx. Note that the spectrum of the matrix Ã is given

by {−π2n2r1}, {−π2n2r2}, n = 1, 2, . . ..
We now cite a well known result on the equivalence of null-controllability

and observability.

Lemma 1 The following assertions are equivalent:
i) for every w ∈ H,

∫ T

t=0
‖B̃∗exp(tÃ∗)w‖2

ωdt ≥ C‖exp(TÃ∗)w‖2
H , (5)

ii) for every y0 ∈ H and every T > 0, system( 2) is null-controllable in
time T , with control f satisfying

∫ T

0
‖f‖2

ωdt ≤ 1

C
‖y0‖2

H . (6)

The proof of this result will appear in the appendix.
We note that Eq. 5 is equivalent to

∫ T

t=0
‖B̃∗ exp((T − t)Ã∗)w‖2

ωdt ≥ C‖ exp(TÃ∗)w‖2
H ,∀w ∈ H. (7)
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3 Proof of Theorem 1 for ρ > 2.

Note that the assumption ρ > 2 implies that the “spectrum” of the problem
is real, with

r1 > r2.

In what follows we prove a sequence of observability results, formulated
as in Lemma 1.

Fix initial conditions

wj = (
2j−1∑

2j−1

an sin(nπx),
2j−1∑

2j−1

bn sin(nπx))T .

Clearly

B̃∗exp(tÃ∗)wj =
1

r2 − r1

2j−1∑

2j−1

(ane−tπ2n2r1 − bne
−tπ2n2r2) sin(πnx).

We apply a generalized Bessel’s inequality proven in [7]: there exists C in-
dependent of j, such that

‖
2j−1∑

n=2j−1

(ane
−tπ2n2r1−bne−tπ2n2r2) sin(πnx)‖2

ω ≥ e−C2j
2j−1∑

n=2j−1

|ane
−tπ2n2r1−bne−tπ2n2r2|2.

(8)
Next, we apply an inequality found in ([6], Steps. 5-6). For each j, let Tj be
a positive constant to be specified later. Then

e−C2j
∫ Tj

0

2j−1∑

n=2j−1

|ane
−tπ2n2r1 − bne

−tπ2n2r2|2dt

≥ e−C2j
2j−1∑

n=2j−1

(
1

2a
((1− 2k)− (1 + 2k)e−2aTj)|an|2 +

1

2b
((1− 2k)− (1 + 2k)e−2bTj)|bn|2

)
(9)

Here a = π2n2r1, b = π2n2r2, and k = 1/ρ. Let δ̃ = 1−2k
4

. Let K be the
minimal positive number such that 2bTj ≥ K implies

[(1− 2k)− (1 + 2k)e−2bTj ]/2 ≥ δ̃.
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Set

Tj =
KC0

2π2r22j−1
, (10)

with C0 > 1 to be chosen later. Then n ∈ [2j−1, 2j − 1] implies 2bTj ≥ K
and hence the RHS of Eq. 9 is greater than or equal to (letting C be various
constants independent of j)

δ̃e−C2j
2j−1∑

n=2j−1

|an|2
π2n2r1

+
|bn|2

π2n2r2

≥ δ̃
e−C2j

π2r1(2j)2

2j−1∑

n=2j−1

|an|2 + |bn|2

≥ δ̃e−C2j
2j−1∑

n=2j−1

|an|2 + |bn|2. (11)

On the other hand,

‖ exp(TjÃ
∗wj)‖2

H = ‖
2j−1∑

2j−1

ane
−Tjπ2n2r1 sin(nπx)‖2

L2(0,1) + ‖
2j−1∑

2j−1

bne
−Tjπ2n2r2 sin(nπx)‖2

L2(0,1)

=
2j−1∑

2j−1

|ane−Tjπ2n2r1|2 + |bne
−Tjπ2n2r2|2

≤ e−2Tjπ2(2j−1)2r2

2j−1∑

2j−1

|an|2 + |bn|2 (12)

Combining Eqs. 12, 11, 9, and 8 we get for any j

∫ Tj

0
‖B̃∗ exp(tÃ∗)wj‖2

ω ≥ δ̃

(r2 − r1)2
e−C2j+2Tjπ2(2j−1)2r2‖eTjÃ∗wj‖2

H

≥ δe−C2j+2Tjπ2(2j−1)2r2‖eTjÃ∗wj‖2
H , (13)

where

δ =
1

4ρ(ρ + 2)

is bounded away from zero for ρ ∈ (2, N) for any N > 2.
Now by Eq. 10

−C2j + 2Tjπ
2(2(j−1))2r2 = 2j(C0K/2− C).
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We choose C0 such that C0
K
2
− C ≡ α > 0. Thus by Eq. 13,

∫ Tj

t=0
‖B̃∗exp(tÃ∗)wj‖2

ωdt ≥ δeα2j‖ exp(TjÃ
∗)wj‖2

H , ∀j. (14)

We choose P > 0 such that j ≥ P implies

Tj =
KC0

2π2r22j−1
< T.

In what follows it will be convenient to define an orthogonal projection
ΠM

N : H→H as follows:

ΠM
N (

∞∑

n=1

cn sin(nπx),
∞∑

n=1

dn sin(nπx))T = (
M∑

n=N

cn sin(nπx),
M∑

n=N

dn sin(nπx))T .

(15)
Suppose now that the initial conditions are y(0) = (

∑∞
1 cn sin(nπx),

∑∞
1 dn sin(nπx))T .

We define a sequence of controls as follows. First we apply a standard com-
pactness argument to argue that there exists CT > 0 such that

∫ T

t=0
‖B̃∗exp(tÃ∗)w0‖2

ωdt ≥ CT‖ exp(TÃ)∗w0‖2
H ,

for w0 = (
∑2P−1

1 an sin(nπx),
∑2P−1

1 bn sin(nπx))T , for arbitrary {(an, bn)}.
It then follows that there exists a control f0 ∈ L2(0, T, L2(ω)) such that the

system in Eq. 2 with initial conditions Π2P−1
1 y(0) can be brought to rest in

time T .
For j ≥ P , we consider the initial conditions

(
2j+1−1∑

2j

cn sin(nπx),
2j+1−1∑

2j

dn sin(nπx))T .

Applying Eq. 14, there exists a control fj that will bring these initial condi-
tions to rest in time Tj < T . Note that by Lemma 1 along with Eq. 14,

∫ Tj

0
‖fj‖2

ωdt ≤ 1

δ
e−α2(j+1)‖Π2(j+1)−1

2j y(0)‖H

≤ 1

δ
e−α2(j+1)‖y(0)‖2

H .
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Thus we obtain a sequence of controls fP , fP+1, . . .. We extend each of these
controls to (0, 1) × (0, T ) by setting fj(x, t) = 0 for t > Tj. Define f by
f ≡ f0 +

∑∞
P fj on [0, T ], f = 0 for t > T . Then f will bring the system

given by Eq. 2 to rest in time T , with

(
∫ T

0
‖f‖2

ωdt)1/2 ≤ ‖f0‖ω + (
∞∑

j=P

e−α2(j+1)

δ
‖y(0)‖2

H)1/2

≤ C‖y(0)‖H .

Remark In the case ρ = 2, we have r1 = r2 = ρ/2, and hence Lasiecka-
Trigianni’s vector framework no longer applies (see, for instance, the formula
for B̃). However, the uniform exponential decay still applies for ρ = 2, and
this together with the Lebeau-Zuazua estimate should be adaptable to the
scalar framework (ie. Eq.0) to prove appropriate observability inequalities,
thus yielding null-controllability for any T > 0, and any pair of initial con-
ditions (u0, u1).

Remark Note that δ→0 as ρ→∞, so the controllability is not uniform
for in ρ for ρ >> 0. This reflects the fact that r2→0 as ρ→∞, so that the
exponential decay is not uniform.

4 Proof of Theorem 1 for ρ ∈ (0, 2)

We first note that for ρ < 2, the spectrum of the matrix Ã is complex and is
given by {−π2n2r1}, {−π2n2r2}, with r1,2 = (ρ± i

√
4− ρ2)/2.

Let
ρ0 ∈ (0, 2)

be a number to be chosen below. We will employ different arguments de-
pending on whether ρ < ρ0 or ρ ∈ [ρ0, 2).

4.1 Proof for ρ ≥ ρ0

Since ρ ≥ ρ0, then the exponential decay of the homogeneous system is
uniform, and the argument of the previous section can easily be adapted. In
place of Eq. 9, we use ([6]-Lemma 2.5): for all j,

∫ Tj

0

2j−1∑

n=2j−1

|ane
−tπ2n2r1 − bne

−tπ2n2r2|2dt ≥
2j−1∑

n=2j−1

(
1

2a
((1− 2h)− (1 + 2h)e−2aTj)

)
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× (|an|2 + |bn|2)
)
. (16)

Here a = π2n2ρ/2 and h = ρ/4. The rest of the argument from the previous
section now carries over word for word, except that δ̃ = (1 − 2h)/4 and
δ = 1/8(2+ρ). Inspection of this argument makes it clear that for ρ ∈ [ρ0, 2),
all observability estimates are uniform with respect to ρ.

4.2 Strategy for proving uniform control for ρ < ρ0

We wish to prove null-controllability that is uniform in ρ; this uniformity is
necessary in the proof of Theorem 2. The method used in Sections 3 and
4.1 to prove null-controllability for ρ > ρ0 may also be applied in the present
case. However, for ρ close to zero, the exponential decay of the system in
Eq.(0) is no longer uniform in ρ, and hence the resulting estimates on f
would not be uniform in ρ.

This section will be organized as follows. We will give different arguments
to prove controllability results for different ”frequency bands”. Fix initial
condition

y(0) = (
∞∑

n=1

cn sin(nπx),
∞∑

n=1

dn sin(nπx)),

with cn, dn ∈ `2. We will determine constants Q, V, P , each independent of
ρ, such that null-controllability, uniform in ρ, can be proven for each of the
following initial conditions:

a)(
∑∞

n=bQ/ρc cn sin(nπx),
∑∞

n=bQ/ρc dn sin(nπx)), to be proven in 4.3,

b)(
∑(bQ/ρc−1)

n=(bV/
√

ρc+1) cn sin(nπx),
∑(bQ/ρc−1)

n=(bV/
√

ρc+1) dn sin(nπx)), to be proven in
4.4,

c) (
∑bV/

√
ρc

n=1 cn sin(nπx),
∑bV/

√
ρc

n=1 dn sin(nπx)), to be proven in 4.5.
More precisely, for ρ < ρ0 and for each of the initial conditions listed in

a,b,c above, the system is null-controllable in time T , with the corresponding
controls fa, fb, fc satisfying

∫

ω

∫ T

0
|fi|2 ≤ C‖y(0)‖2

H , i = a, b, c,

and with constant C independent of ρ. By superposition, we obtain null-
controllability for y(0) with control f = fρ satisfying

∫
ω

∫ T
0 |f |2 ≤ C‖y(0)‖2

H ,

9



with C independent of ρ. From this follows the uniform observability in-
equality: for ρ < ρ0,

∫ T

t=0
‖B̃∗exp(−tÃ∗)w‖2

ωdt ≥ 1

C
‖w‖2

H , ∀w ∈ H. (17)

Theorem 2 is an easy corollary of this inequality. For completeness, the proof
that Eq. 17 implies Theorem 2 is included in the appendix.

4.3 Controllability of high frequencies

Proposition 1 There exists a constant Q, with Q depending only on ω and
T , such that if

N ≥ Q

ρ
, (18)

then for any initial conditions of the form

y ≡ (
∞∑

N

cn sin(nπx),
∞∑

N

dn sin(nπx))T ∈ H,

the system in Eq. 2 is null-controllable in time T with
∫
ω

∫ T
0 |f |2 ≤ C‖y(0)‖2

for some constant C independent of ρ.

Proof: We mimic the arguments of the Sections 3 and 4.1. As in that section,

B̃∗exp(tÃ∗)wj =
1

r2 − r1

2j−1∑

2j−1

(ane−tπ2n2r1 − bne
−tπ2n2r2) sin(πnx),

and

‖
2j−1∑

n=2j−1

(ane
−tπ2n2r1−bne−tπ2n2r2) sin(πnx)‖2

ω ≥ e−C2j
2j−1∑

n=2j−1

|ane
−tπ2n2r1−bne−tπ2n2r2|2.

(19)
Next, we apply the argument of [[6]-Lemma 2.5]. For all j,

e−C2j
∫ Tj

0

2j−1∑

n=2j−1

|ane
−tπ2n2r1 − bne

−tπ2n2r2|2dt ≥ e−C2j
2j−1∑

n=2j−1

(
1

2a
((1− 2h)− (1 + 2h)e−2aTj)

)

× (|an|2 + |bn|2)
)
. (20)
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Here a = π2n2ρ/2 and h = ρ/4. Set δ̃ = 1−2h
4

. Let K be the minimal positive
number such that 2aTj ≥ K implies

[(1− 2h)− (1 + 2h)e−2aTj ] ≥ δ̃.

Set

Tj =
KC0

π2ρ2j−1
, (21)

with C0 > 1 to be chosen later. Then n ∈ [2j−1, 2j − 1] implies 2aTj ≥ K
and hence the RHS of Eq. 20 is greater than or equal to (letting C be various
constants independent of j and ρ)

δ̃e−C2j
2j−1∑

n=2j−1

|an|2
π2n2ρ

+
|bn|2
π2n2ρ

≥ δ̃
e−C2j

π2ρ(2j)2

2j−1∑

n=2j−1

|an|2 + |bn|2

≥ δ̃e−C2j

ρ

2j−1∑

n=2j−1

|an|2 + |bn|2. (22)

On the other hand,

‖exp(TjÃ
∗wj)‖H = ‖

2j−1∑

n=2j−1

ane
−Tjπ2n2r1 sin(nπx)‖2

L2(0,1) + ‖
2j−1∑

2j−1

bne−Tjπ2n2r2 sin(nπx)‖2
L2(0,1)

=
2j−1∑

2j−1

|ane
−Tjπ2n2r1|2 + |bne−Tjπ2n2r2|2

≤ e−Tjπ2(2j−1)2ρ
2j−1∑

2j−1

|an|2 + |bn|2 (23)

Combining Eqs. 23, 22, 16, and 19 and using ρ < 1, we get for any j

∫ Tj

0
‖B̃∗exp(tÃ∗)wj‖2

ω ≥ δ̃

|r1 − r2|2 e−C2j+Tjπ2(2j−1)2ρ−ln ρ‖eTjÃ∗wj‖2
H

≥ δe−C2j+Tjπ2(2j−1)2ρ‖eTjÃ∗wj‖2
H , (24)

with δ = δ̃/|r1 − r2|2 bounded away from zero independently of ρ. Now by
Eq. 21

−C2j + Tjπ
2(2(j−1))2ρ = 2j(C0K/2− C).

11



We choose C0 such that C0
K
2
− C ≡ α > 0. Thus by Eq. 24,

∫ Tj

t=0
‖B̃∗exp(tÃ∗)wj‖2

ωdt ≥ δeα2j‖ exp(TjÃ
∗)wj‖2

H . (25)

We choose P > 0 such that ρ2P > KC0

π2T
. Then for j ≥ P + 1,

Tj =
KC0

π2ρ2j−1

< T.

The proof of the proposition now follows by mimicking the argument appear-
ing in the Section 3 for ρ > 2, setting Q = dKC0

Tπ2 e and N = 2P .

4.4 Ingham-type argument for intermediate frequen-
cies

In this section we treat the case

V√
ρ
≤ n <

Q

ρ
,

with V a constant to be determined below. We begin with a technical lemma:

Lemma 2 Let

gn(m) ≡ 4− ρ2

ρ2n2
(1 +

m

n
)2(n−m)2 + (1 +

m2

n2
)2.

Then, assuming nρ < Q, there exists a constant P0 such that if m,n ≥ P0,
with m 6= n, then there exists a constant γ > 0 such that

gn(m) > 4 + γ. (26)

Proof: Noting that

gn(m) =
4− ρ2

ρ2n4
(n + m)2(n−m)2 + (1 +

m2

n2
)2,

we have that

g′n(m) = m3(
4(4− ρ2)

n4ρ2
+

4

n4
)−m(

4(4− ρ2)

ρ2n2
− 4

n2
).
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It is thus easy to verify that on the positive reals, g′n < 0 on (0, n
√

1− ρ2/2)

and g′n > 0 on (n
√

1− ρ2/2,∞). Since ρn ≤ Q, there exists P1 such that

n > P1 implies that n
√

1− ρ2/2 ∈ (n − 1, n). We conclude that when m is
an integer,m 6= n , then gn will be minimized at m = n± 1. One calculates

gn(n± 1) ≥ 4 +
4(4− ρ2)

ρ2n2
(1− 1

n
)− 8

n
+ O(

1

n2
). (27)

Since nρ ≤ Q, it follows that we can choose P2 and γ ∈ (0, 4(4 − ρ2)/Q2)
such that n ≥ P2 implies

4(4− ρ2)

ρ2n2
(1− 1

n
)− 8

n
+ O(

1

n2
) > γ.

The proof is completed by setting P0 = max(P1, P2).
The main result of this section is then:

Proposition 2 Let Q be as in Proposition 1, and P0 as in Lemma 2. Then
there exist positive constants ρ1 and V , with V independent of ρ, such that
if ρ < ρ1, and

N = bQ
ρ
c − 1, P = max(P0, b V√

ρ
c+ 1),

then for initial conditions

y(0) ≡ (
N∑

P

cn sin(nπx),
N∑

P

dn sin(nπx))T ,

we have null-controllability in time T with
∫
ω

∫ T
0 |f |2 ≤ C‖y(0)‖2 for some

constant C independent of ρ.

The first step in the proof of this proposition is the following Ingham-type
inequality:

Lemma 3 Let d ∈ R+. Assume N satisfies N ≤ Q/ρ. Then there exist
δ > 0, ρ1 > 0 and positive integers R and P̃ such that if ρ < ρ1, if

P ≥ max(P0,

√√√√ P̃

ρdπ2
),
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and if

f(t) =
N∑

n=P

ane
−tdn2π2r1 + bne

−tdn2π2r2 ,

then ∫ 1

−1
|f(t)|2dt ≥ δ

N∑

n=P

eπ2dρn2

(π2d2ρ2n4)R+2
(|an|2 + |bn|2).

Here δ, R, P̃ are independent of f, d, ρ.

Proof: We define C1, C2 ∈ R by

dπ2r1 = dπ2ρ/2 + idπ2
√

4− ρ2/2

= C1 + iC2, (28)

and hence
dπ2r2 = C1 − iC2.

Thus, since f(t) =
∑

ane−tn2(C1+iC2) + bne
−tn2(C1−iC2), we have

|f(t)|2 =
N∑

m=P

N∑

n=P

anam exp(−C1(n
2 + m2)t + C2(m

2 − n2)it)

+
N∑

m=P

N∑

n=P

bnbm exp(−C1(n
2 + m2)t + C2(−m2 + n2)it)

+ 2<(
N∑

m=P

N∑

n=P

anbm exp(−C1(n
2 + m2)t + C2(−m2 − n2)it))

≡ I(t) + II(t) + III(t). (29)

Set
K(u) =

∫ ∞

−∞
k(t)e−utidt.

The idea of the proof is to choose k so that K(u) has certain desirable growth
properties as u→∞ along various sectors in the complex plane.

Let R be an even positive integer whose exact value will be determined
later. Define k̃(t) to be a polynomial on [0, 1] satisfying:

k̃(j)(1) = 0, j = 0, . . . , R

k̃(0) = 1,

k̃(j)(0) = 0, 0 < j ≤ R, j odd. (30)

14



Proving that k̃ exists is an amusing exercise in linear algebra. Let M be the
order of k̃.

We then extend k̃ to the real line as follows:

k(t) =





0, |t| > 1

k̃(−t), t ∈ [−1, 0]

k̃(t), t ∈ [0, 1].

Thus k ∈ CR(−∞,∞), with the support being the interval [−1, 1]. Fur-
thermore, ‖k‖∞ = k(0) = 1.

Thus, using integration by parts and Eq. 30,

K(u) ≡
∫

R
e−ituk(t)dt

= 2
∫ 1

0
k(t) cos(tu)dt

= 2[
M∑

j=0

u−j−1k(j)(t)(
dj

dsj
sin s)|s=tu]

1
0

= 2




M∑

j=R+1

u−j−1k(j)(1)(
dj

dsj
sin s)|s=u

−
M∑

j=R/2+1

(−1)j+1u−2jk(2j−1)(0)


 .

It follows that, for u, v ∈ R and u >> 0,

|K(v − iu)| = |k(R+1)(1)|eu

|v − iu|R+2
+ O(|v − iu|−R−3eu). (31)

We begin by analysing
∫

R
I(t)k(t)dt =

N∑

m=P

N∑

n=P

anamK(−iC1(n
2 + m2) + C2(n

2 −m2))

=
N∑

n=P

|an|2K(−2iC1n
2) +

∑

m,n;m6=n

anamK(−iC1(n
2 + m2) + C2(n

2 −m2)).

Let ε > 0. We choose P̃1 = P̃1(R, ε) sufficiently large that the following holds
for 2C1n

2 = π2dρn2 ≥ P̃1,

K(−2iC1n
2) ≥ (1− ε)

|k(R+1)(1)|e2C1n2

(2C1n2)R+2
,
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and hence, setting P1 = d
√

P̃1

π2dρ
e,

N∑

n=P1

|an|2|K(−2iC1n
2)| ≥ (1− ε)|k(R+1)(1)|

N∑

n=P1

|an|2e2C1n2

(2C1n2)R+2
. (32)

Next, by Eq. 28

|C2(n
2 −m2) + iC1(n

2 + m2)|2 = C2
2(n2 −m2)2 + C2

1(n2 + m2)2

= C2
1n

4

(
4− ρ2

ρ2n2
(1 +

m

n
)2(n−m)2 + (1 +

m2

n2
)2

)

= C2
1n

4gn(m), (33)

with gn(m) as in Lemma 2.
Hence, there exists P̃2 = P̃2(ε, R) such that for for π2dρm2, π2dρn2 ≥ P̃2,

we have by Eq. 31

|K(C2(n
2 −m2) + iC1(n

2 + m2))| ≤ (1 + ε)
|k(R+1)(1)|eC1(n2+m2)

|C2(n2 −m2) + iC1(n2 + m2)|R+2

Hence, setting P2 = d
√

P̃2

π2dρ
e and using Eq. 33,

N∑

m,n=P2,m6=n

|anamK(C2(n
2 −m2) + iC1(n

2 + m2))|

≤ 1

2

N∑

m,n≥P2,m6=n

(1 + ε)
|k(R+1)(1)|(|an|2e2C1n2

+ |am|2e2C1m2
)

|C2(n2 −m2) + iC1(n2 + m2)|R+2

≤
N∑

n=P2

|an|2e2C1n2
N∑

m=P2,m6=n

|k(R+1)(1)|(1 + ε)

|C2(n2 −m2) + iC1(n2 + m2)|R+2

≤ (1 + ε)|k(R+1)(1)|
N∑

n=P2

|an|2e2C1n2

(C1n2)R+2

N∑

m=P2,m6=n

1

(gn(m))
R+2

2

(34)

Set P = max(P0, P1, P2).We analyze

N∑

m=P,m6=n

gn(m)−
R+2

2 ≤
N∑

1≤|m−n|≤Q2+1

gn(m)−
R+2

2 +
N∑

|m−n|≥Q2+2

gn(m)−
R+2

2 . (35)
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It follows from Lemma 2 that for R = R(Q, γ) sufficiently large,

∑

|m−n|≤Q2+1

gn(m)−(R+2)/2 ≤ ∑

|m−n|≤Q2+1

(4 + γ)−(R+2)/2

≤ (2Q2 + 2)(4 + γ)−(R+2)/2

≤ 1

4
4−(R+2)/2

=
1

4
2−(R+2). (36)

Fixing R as above, we then estimate

∑

|m−n|≥Q2+2

gn(m)−(R+2)/2 ≤ ∑

|m−n|≥Q2+2

(
4− ρ2

ρ2n4
)
−R−2

2 |n2 −m2|−(R+2)

Assume for the moment that n−Q2 > P and that n + Q2 < N . Then

∑

|m−n|≥Q2+2

(
4− ρ2

ρ2n4
)
−R−2

2 |n2−m2|−(R+2) ≤
(∫ n−Q2

m=P
+

∫ ∞

m=Q2+n

)
(
4− ρ2

ρ2n4
)
−R−2

2 |m2−n2)|−(R+2)dm.

We estimate the first of these terms. Recalling that nρ ≤ Q,

∫ n−Q2

m=P
(
4− ρ2

n4ρ2
)
−R−2

2 (n2 −m2)−(R+2)dm ≤ (
ρ2n4

4− ρ2
)(R+2)/2

∫ n−Q2

m=P
(
1/(2n)

n−m
+

1/(2n)

n + m
)R+2

≤ (
n2ρ2

4(4− ρ2)
)(R+2)/2

∫ n−Q2

m=P
(

1

n−m
+

1

n + m
)R+2

≤ (
n2ρ2

4− ρ2
)(R+2)/2

∫ n−Q2

m=P
(

1

n−m
)R+2

≤ (
n2ρ2

4− ρ2
)(R+2)/2 · Q−2R−2 − (n− P )−R+1

R + 1

≤ (
1

4− ρ2
)(R+2)/2 · Q−R

R + 1

≤ 1

8 · 2R+2
, (37)

provided Q > 2 and R ≥ 1. The other integral, and the cases where n−Q2 <
P or n + Q2 > N , can be easily shown to satisfy the same estimate. Thus,
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combining Eqs. 37, 36, 35 and 34, we see that

N∑

m,n=P2,m6=n

|anamK(C2(n
2−m2)+iC1(n

2+m2))| ≤ 1 + ε

2
|k(R+1)(1)|

N∑

n=P2

|an|2e2C1n2

(2C1n2)R+2
.

Comparing this with Eq. 32, we get (assuming ε is sufficiently small)

∫

R
I(t)k(t)dt ≥ δ

N∑

n=P

|an|2 e2C1n2

(2C1n2)R+2
,

for some δ > 0.
Similarly,

∫

R
II(t)k(t)dt ≥ δ

N∑

n=P

|bn|2 e2C1n2

(2C1n2)R+2
.

It remains to estimate the term
∫

III(t)k(t)dt. Arguing as we did for∫
I(t)k(t)dt, we have, for some ε > 0,

|
∫

III(t)k(t)dt| = 2|
N∑

m,n=P

anbmK(−iC1(n
2 + m2) + C2(m

2 + n2))|

≤ (1 + ε)|k(R+1)(1)|
N∑

m,n=P

|an|2e2C1n2
+ |bm|2e2C1m2

(C2
1 + C2

2)(R+2)/2(n2 + m2)(R+2)
.

(38)

Consider the term involving |an|2. We have

N∑

m,n=P

|an|2e2C1n2

(C2
1 + C2

2)(R+2)/2(n2 + m2)(R+2)
=

N∑

n=P

|an|2e2C1n2

(d2π4)(R+2)/2

N∑

m=P

1

(m2 + n2)(R+2)

≤
N∑

n=P

|an|2e2C1n2

(dπ2)(R+2)

N − P

n(2R+4)

≤
N∑

n=P

|an|2e2C1n2
ρR+2N

(2C1n2)(R+2)

≤ QρR+1
N∑

n=P

|an|2e2C1n2

(2C1n2)(R+2)
.

(39)
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A similar estimate holds for the terms involving bn, so the lemma follows if
we choose ρ1 to satisfy (1 + ε)QρR+1

1 = δ/2.

Remark. The most common choice for k in Ingham type arguments has
been the cut off cosine function found in [4]. But this choice, which implicitly
sets R = 2, is not sufficient to give Eq. 36.

Remark. Our choice for k do not seem to improve on the original Ingham
inequality appearing in [4].

Remark. It is of interest to try to extend this lemma to the case N = ∞.

However, because gn(n
√

1− ρ2/2) = 4−ρ2 < 4, it follows that the hypothesis
ρn ≤ Q for some Q is necessary in the proof of Eq. 26. Thus we cannot extend
this lemma to N = ∞, at least with the current methods.

Corollary 1 Assume T > 0 and let ρ < ρ1. Set d = T/2. Let N ≤ Q/ρ,

P ≥ max(

√
P̃

π2ρd
, P0), with P̃ as in previous lemma. Then if

f(t) =
N∑

n=P

ane−tn2π2r1 + bne
−tn2π2r2 ,

then ∫ T

0
|f(t)|2dt ≥ CT

N∑

P

|an|2 + |bn|2
(ρn2T )R+2

,

where C = C(R) is a positive constant independent of ρ, {an}{bn}, T .

Proof: We have, using the substitution s = 2t/T − 1 and then the previous
lemma (with d = T/2),

∫ T

0
|f(t)|2dt =

T

2

∫ 1

−1
|

N∑

n=P

(ane−n2π2r1T/2)e−sdn2π2r1 + (bne
−n2π2r2T/2)e−sdn2π2r2|2ds

≥ Tδ

2

N∑

n=P

(|ane
−ρπ2n2T/4|2 + |bne

−ρπ2n2T/4|2) eρπ2n2T/2

(ρπ2n2T/2)R+2

≥ TC
N∑

n=P

|an|2 + |bn|2
(ρn2T )R+2

,
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Proposition 3 Let ρ, N, T, R be as above. There exists V such that if P ≥
max(P0, V/

√
ρ), then, given initial conditions (

∑N
P cn sin(nπx),

∑N
P dn sin(nπx)),

there exists a control f bringing the system in Eq. 2 to rest in time T . Fur-
thermore f satisfies

∫ T

0

∫

ω
|f |2 ≤ C̃

N∑

n=P

|cn|2 + |dn|2,

where C̃ is independent of ρ.

Proof: It suffices to prove the observability inequality
∫ T

0
‖B̃ exp(tÃ∗)w‖2

ωdt ≥ 1

C̃
‖ exp(TÃ∗)w‖2

H , , (40)

for w = (
∑N

P an sin(nπx),
∑N

P bn sin(nπx)) and for C̃ some constant indepen-
dent of ρ.

Recall

B̃∗exp(tÃ∗)w =
1

r2 − r1

N∑

P

(ane−tπ2n2r1 − bne
−tπ2n2r2) sin(πnx).

Hence, applying Cor. 1, there exists C such that,

∫ T

t=0
‖B̃∗ exp(tÃ∗)w‖2

ω =
1

|r1 − r2|2
∫

ω

∫ T

t=0
|

N∑

n=P

(ane−tπ2n2r1 − bne
−tπ2n2r2) sin(πnx)|2dtdx

≥ TC
N∑

P

(|an|2 + |bn|2)
(ρn2T )R+2

∫

ω
| sin(nπx)|2 dx

≥ TCκ
N∑

P

|an|2 + |bn|2
(ρn2T )R+2

,

with κ = κ(ω) a positive constant which is independent of N,P, ρ.
On the other hand, by Eq. 4

‖ exp(TÃ∗)w‖2
H = ‖(

N∑

P

ane−Tπ2n2r1 sin(nπx),
N∑

P

bne
−Tπ2n2r2 sin(nπx))‖2

H

=
N∑

P

|ane
−Tπ2n2r1|2 + |bne

−Tπ2n2r2|2

=
N∑

P

e−Tπ2n2ρ(|an|2 + |bn|2) (41)
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Choose W such that π2ρn2 ≥ W implies

e−Tπ2n2ρ ≤ (Tn2ρ)−(R+2).

Then, setting

V = max(

√
2P̃

Tπ2
,

√
W

π
),

Eq. 40 clearly follows by setting 1/C̃ = TCκ.
It follows from Eq. 40 and Lemma 1 that there exists a control f which

will bring the system to rest in time T , with

∫ T

0

∫

ω
|f |2dxdt ≤ C̃

N∑

n=P

|an|2 + |bn|2.

Proposition 2 is proven.

4.5 Low frequencies

In this section we prove the following:

Proposition 4 Let V, ρ1 be as in the previous subsection. There exists ρ0 ≤
ρ1 such that if N ≤ V/

√
ρ, then for initial conditions (

∑N
1 cn sin(nπx),

∑N
1 dn sin(nπx)),

the system in Eq. 2 is null-controllable in time T with a control f satisfying∫
ω

∫ T
0 |f |2 ≤ C for some constant C independent of ρ.

Remark Note that for frequencies considered in this section, we that
<(π2n2ri) < 2V for i = 1, 2, ie. the real parts of the frequencies are bounded
with bound independent of ρ. The Ingham-type inequalities proven in this
section can be compared with those surveyed in Young’s book [13] (also see
[1]), where (when their language is adapted to the framework of this paper)
complex frequencies with an upper bound on the real parts are also consid-
ered. The hypotheses in [13] are stronger than those found here, though, and
the resulting family of exponential functions actually forms a Riesz basis on
some interval.

To prove Prop. 4, we will need to prove observability estimates on three

different frequency bands whose union makes up {n2r1,2}dV/
√

ρe
n=1 . The first

two of these observability estimates, proven in Lemmas 4 and 5, are again
proven using Ingham type inequalities, each one adapted to the frequency
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band in question. Why these two lemmas cannot be combined among them-
selves or with Lemma 3 will be pointed out during the proofs. The third
observability estimate in this section, Lemma 6, will correspond to a set of
frequencies {n2r1,2}P

n=1, with P a constant independent of ρ. Here a standard
compactness argument yields an observability estimate that is uniform in ρ.

In what follows we set

ρ0 = min(ρ1, 1/10, 1/V 2).

Lemma 4 Let d ∈ R+. Assume ρ < ρ0, and that N, P satisfy:

P > max(16, d1/de,
√

2

π2dρ
)

V 2 ln(P )/P < 1/17

N ≤ V/
√

ρ.

There exists δ > 0 such that if

f(t) =
N∑

n=P

ane
−tn2dπ2r1 + bne

−tn2dπ2r2 ,

then ∫ π

−π
|f(t)|2dt ≥ δ

N∑

n=P

eπ3dρn2

d2ρ2n4
(|an|2 + |bn|2).

Here δ is independent of N,P, f, d, ρ.

Proof: Using the notation of the proof of Lemma 3, we have

∫

R
I(t)k(t)dt =

N∑

n=P

|an|2K(−2iC1n
2) +

∑

m,n;m6=n

anamK(−iC1(n
2 + m2) + C2(n

2 −m2)).

(42)

For this lemma we use a test function used by Ingham in [4]:

k(t) =

{
cos(t/2), |t| ≤ π

0, |t| > π.
(43)

Remark Although we could choose our test function to be as in Lemma
3, our choice here has the advantage of giving a simpler formula for K. In
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fact, here K(u) = 4 cos(πu)
1−4u2 . On the other hand, Ingham’s test function could

not be used in Lemma 3, where it is vital for the denominator of K to be of
order R >> 0 in the argument leading to Eq. 36.

Note that the hypothesis P ≥
√

2/(π2ρd) implies that if n ≥ P , then

C1n
2 ≥ 1. Hence for n ≥ P ,

K(−2iC1n
2) =

4 cosh(2πC1n
2)

1 + 16C2
1n

4

≥ 2e2πC1n2

17C2
1n

4
. (44)

Also, there exists γ > 0 such that

|K(−iC1(n
2 + m2) + C2(n

2 −m2))| = 4|cos(π(−iC1(n
2 + m2) + C2(n

2 −m2)))

1− 4(−iC1(n2 + m2) + C2(m2 − n2))2
|

= 2|e
πiC2(n2−m2)+πC1(n2+m2) + e−πiC2(n2−m2)−πC1(n2+m2)

1− 4(C2(n2 −m2) + iC1(n2 + m2))2
|

≤ 1

2− 2γ

eπC1(n2+m2)

C2
2(n2 −m2)2 + C2

1(n2 + m2)2
. (45)

This last inequality was derived as follows. Assume first that n > m. Note
that ρ < 1/10 implies C2 > 3dπ2/2. Also, the hypothesis P > 1/d implies
n2 −m2 ≥ 2/d. Hence C2(n

2 −m2)− 1
2
≥ (1− γ)C2(n

2 −m2) with γ = 1/3,
and hence

|1− 4(C2(n
2 −m2) + iC1(n

2 + m2))2| = 4|1
2
− C2(n

2 −m2)− iC1(n
2 + m2)|

·|1
2

+ C2(n
2 −m2) + iC1(n

2 + m2)|
≥ 4| − (1− γ)C2(n

2 −m2)− iC1(n
2 + m2)|

·|1
2

+ C2(n
2 −m2) + iC1(n

2 + m2)|
≥ 4(1− γ)| − C2(n

2 −m2)− iC1(n
2 + m2)|

·|1
2

+ C2(n
2 −m2) + iC1(n

2 + m2)|
≥ 4(1− γ)(C2

2(n2 −m2)2 + C2
1(n2 + m2)2).
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The proof for m > n is similar. Hence, for any P, N satisfying the hypotheses
of the lemma,

N∑

m,n=P,m6=n

|anamK(−iC1(n
2 + m2) + C2(m

2 − n2))|

≤ 1/2

2− 2γ

N∑

m,n≥P,m 6=n

|an|2e2πC1n2
+ |am|2e2πC1m2

C2
2(n2 −m2)2 + C2

1(n2 + m2)2

=
1

2− 2γ

N∑

n=P

|an|2e2πC1n2
N∑

m=P,m 6=n

1

C2
2(n2 −m2)2 + C2

1(n2 + m2)2
. (46)

We analyze the term

N∑

m=P,m 6=n

1

C2
2(n2 −m2)2 + C2

1(n2 + m2)2
=

1

C2
1 + C2

2

N∑

m=P,m6=n

1

n4 + 2βn2m2 + m4
,

(47)
with

β ≡ C2
1 − C2

2

C2
1 + C2

2

= −1 + ρ2/2.

One easily verifies that

n4 + 2βn2m2 + m4 = (m + nx)(m− nx)(m + ny)(m− ny)

with x =
√
−β − i

√
1− β2, y =

√
−β + i

√
1− β2, and that

1

n4 + 2βn2m2 + m4
=

1

−4in3x
√

1− β2
(

1

m− nx
− 1

m + nx
)+

1

4in3y
√

1− β2
(

1

m− ny
− 1

m + ny
).

Suppose, for the moment, that n = P . Thus, since x = y ∼ 1 and P−Px ∼ 0,

N∑

m=P,m 6=n

1

n4 + 2βn2m2 + m4
=

N∑

m=P+1

1

n4 + 2βn2m2 + m4

∼
∫ N

m=P+1

dm

n4 + 2βn2m2 + m4

≤ 1

| − 4in3x
√

1− β2| ln |
(N − Px)(P + 1 + Px)

(P + 1− Px)(N + Px)

24



+
1

| − 4in3y
√

1− β2| ln |
(N − Py)(P + 1 + Py)

(P + 1− Py)(N + Py)
|

≤ ln(N)

n3
√

1− β2

≤ ln(N)(C2
1 + C2

2)

2n3C1C2

(48)

It is easy to verify that the same estimate holds for n > P . Thus, using
C2 > 3π2d/2, along with Eqs. 46, 47, 48 and the hypotheses ρN2 ≤ V 2,
V 2 ln(N)/N < 1/17,

N∑

m,n=P,m 6=n

|anamK(−iC1(n
2 + m2) + C2(n

2 −m2))| ≤ 1

2− 2γ

N∑

n=P

ln(N)

2n3C1C2

|an|2e2πC1n2

≤
N∑

n=P

1/17

C2
1n

4
|an|2e2πC1n2

. (49)

It follows from Eqs. 42, 44 and 49 that

∫

R
I(t)k ≥

N∑

n=P

|an|2 e2πC1n2

17C2
1n

4
(50)

A similar argument yields

∫

R
II(t)k ≥

N∑

n=P

|bn|2 e2πC1n2

17C2
1n

4
(51)

Finally, we consider
∫

III(t)kdt. We have, using the arguments leading
to Eq. 45, that there exists γ > 0 such that

∫
III(t)k(t)dt = 2

N∑

m,n=P

|anbm|K(−iC1(n
2 + m2) + C2(m

2 + n2))|

= 2
N∑

m,n=P

|anbm| 4 cos(−iπC1(n
2 + m2) + C2π(m2 + n2))

1− 4(−iC1(n2 + m2) + C2(−m2 − n2))2

≤ 2
N∑

m,n=P

|anbm| eC1π(n2+m2)

(2− γ)(C2
1 + C2

2)(m2 + n2)2
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≤
N∑

m,n=P

|anbm| 2eπC1(n2+m2)

(2− γ)π4d2(m2 + n2)2

≤
N∑

m,n=P

|an|2e2πC1n2
+ |bm|2e2πC1m2

(2− γ)π4d2(m2 + n2)2
. (52)

Consider the term involving |an|2. We have, using Eq. 28, the hypotheses on
P , and the hypotheses ρ ≤ 1/V 2 and P > 17:

N∑

m,n=P

|an|2e2πC1n2

(2− γ)π4d2(m2 + n2)2
=

N∑

n=P

|an|2e2πC1n2
ρ2

2(2− γ)C2
1

N∑

m=P

1

(m2 + n2)2

≤
N∑

n=P

|an|2e2πC1n2
ρ2

2(2− γ)C2
1n

3

=
N∑

n=P

|an|2e2πC1n2
ρ2n

2(2− γ)C2
1n

4

≤
N∑

n=P

|an|2e2πC1n2
ρV 2/N

2(2− γ)C2
1n

4

≤
N∑

n=P

|an|2e2πC1n2

34(2− γ)C2
1n

4

≤
N∑

n=P

|an|2e2πC1n2

34C2
1n

4
, (53)

provided γ is small enough. The same argument shows that

N∑

m,n=P

|bm|2e2πC1m2

(2− γ)π4d2(m2 + n2)2
≤

N∑

m=P

|bm|2e2πC1m2

34C2
1m

4
. (54)

The lemma is completed by using Eqs. 54, 53, 51, 50.
The lemma follows. We now state the corresponding result for integrals

over the interval [0, T ].

Corollary 2 Set d = T
2π

. Assume the hypotheses of the previous lemma. If

f(t) =
N∑

n=P

ane−tn2π2r1 + bne
−tn2π2r2 ,
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then ∫ T

0
|f(t)|2dt ≥ C

N∑

P

|an|2 + |bn|2,

where C is a positive constant independent of ρ, {an}, {bn}.
Proof: We have, using the substitution s = t/d − π and then the previous
lemma (with d = T/2π),

∫ T

0
|f(t)|2dt =

∫ T

0

N∑

n=P

|ane
−tn2π2r1 + bne

−tn2π2r2|2dt

=
T

2π

∫ π

−π
|

N∑

n=P

(ane
−n2π2r1T/2)e−sn2π2r1d + (bne−n2π2r2T/2)e−sn2π2r2d|2ds

≥ T

68π

N∑

n=P

(|ane−n2π2ρT/4|2 + |bne−n2π2ρT/4|2) eπ2n2ρT/2

π4d2ρ2n4

≥ C
N∑

n=P

|an|2 + |bn|2.

Next, we prove observability for n ≤
√

2/(π2ρd).

Lemma 5 Let T, V, d be as in the previous corollary, and assume ρ < ρ0.
Assume π2dρN2 ≤ 2 Then there exists a positive constant δ, independent of
ρ, such that if P > max(d1/de, 16, P0) and V ln(P )/P < 1/17, then

f(t) =
N∑

n=P

ane−tn2dπ2r1 + bne−tn2dπ2r2

satisfies the inequality

∫ π

−π
|f(t)|2dt ≥ δ

N∑

n=P

(|an|2 + |bn|2).

Proof: The proof follows along the lines of the proof of the previous lemma,
whose notation we use. As in the previous lemma, K(u) = 4 cos(πu)

1−4u2 . Consider
first the term

∫

R
I(t)k(t)dt =

N∑

n=P

|an|2K(−2iC1n
2)+

∑

m,n;m6=n

anamK(−iC1(n
2+m2)+C2(n

2−m2)).
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Note that

K(−2iC1n
2) =

4 cosh(2πC1n
2)

1 + 16C2
1n

4

≥ 4
1 + (2πC1n

2)2/2

1 + 16C2
1n

4

≥ 4. (55)

Also, π2dρN2 ≤ 2 implies that for n ≤ N , n2C1 ≤ 1.
Remark Since n2C1 is not bounded below in this case, Eq. 44 no longer

holds. Hence, the proof of Lemma 4 no longer applies. Instead, we have

|K(−iC1(n
2 + m2) + C2(n

2 −m2))| = 2|e
πiC2(n2−m2)+πC1(n2+m2) + e−πiC2(n2−m2)−πC1(n2+m2)

1− 4(C2(n2 −m2) + iC1(n2 + m2))2
|

≤ 2(e2π + e−2π)

4C2
2(n2 −m2)2 − 17

. (56)

Note that ρ < 1/10 implies C2 > (.99)dπ2, and hence e2π+e−2π

2C2
2/d2 < 3 − δ,

for some δ > 0. Also, since n,m ≥ P , we have by hypothesis n2 − m2 ≥
(n−m)(2/d). Hence

N∑

m=P,m 6=n

|K(−iC1(n
2 + m2) + C2(n

2 −m2))| ≤ 2(e2π + e−2π)
N∑

m=P,m6=n

1

4C2
2(n2 −m2)2 − 17

≤ (e2π + e−2π)

2C2
2/d

2

N∑

m=P,m6=n

1

4(n−m)2 − 17d2

4C2
2

≤ (3− δ)
N∑

m=P,m 6=n

1

4(n−m)2 − 1

≤ (3− δ) · 2
∞∑

r=1

1/2

2r − 1
− 1/2

2r + 1

< 3− 2δ. (57)

Similarly,

N∑

n=P,m6=n

|K(−iC1(n
2 + m2) + C2(n

2 −m2))| < 3− 2δ. (58)
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Thus, by Eqs. 57, 58 and 55, and the inequality |aman| ≤ (|am|2+|an|2)/2,
∫

R
I(t)k(t)dt ≥

N∑

n=P

4|an|2 −
N∑

m,n≥P ;m6=n

|an|2 + |am|2
2

|K(−iC1(n
2 + m2) + C2(n

2 −m2))|

≥
N∑

n=P

4|an|2 − 1

2
(3− δ)

N∑

m=P

|am|2 − 1

2
(3− δ)

N∑

n=P

|an|2

≥ (1 + δ)
N∑

n=P

|an|2

Similarly,
∫

R
II(t)k(t)dt ≥ (1 + δ)

N∑

n=P

|bn|2.

To complete the proof, it suffices to show that

|
∫

III(t)k(t)dt| ≤
N∑

P

|an|2 + |bn|2. (59)

In fact, by Eq. 52, we have, for some γ > 0,

|
∫

III(t)k(t)dt| ≤
N∑

m,n=P

|an|2e2πC1n2
+ |bm|2e2πC1m2

(2− γ)π4d2(m2 + n2)2
.

Consider the term involving |an|2. We have

N∑

m,n=P

|an|2e2πC1n2

(2− γ)π4d2(m2 + n2)2
≤

N∑

n=P

|an|2e2π

d2π4(2− γ)

N∑

m=P

1

(m2 + n2)2

≤
N∑

n=P

2|an|2e2π

d2π4(2− γ)n3

≤
N∑

n=P

2|an|2e2π

π4(2− γ)n

≤
N∑

n=P

|an|2,

because P > 16 implies 2e2π

π4(2−γ)P
≤ 1 provided γ is small enough. The same

argument then shows that

N∑

m,n=P

|bm|2e2πC1m2

2(2− γ)π4d2(m2 + n2)2
≤

N∑

m=P

|bm|2.
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The lemma now follows.

Corollary 3 Assume the hypotheses of the previous lemma. If

f(t) =
N∑

n=P

ane
−tn2π2r1 + bne−tn2π2r2

then there exists C > 0 such that

∫ T

0
|f(t)|2dt ≥ C

N∑

n=P

|an|2 + |bn|2.

Proof: As in the proof of the previous corollary,

∫ T

0
|f(t)|2dt =

T

2π

∫ π

−π
|

N∑

n=P

(ane
−n2π2r1T/2)e−tn2π2r1d + (bne

−n2π2r2T/2)e−tn2π2r2d|2dt

≥ Tδ

2π

N∑

n=P

(|ane
−n2π2ρT/4|2 + |bne

−n2π2ρT/4|2)

≥ Tδe−π/2

2π

N∑

n=P

|an|2 + |bn|2.

Finally, by a standard compactness argument, we have

Lemma 6 Let T, P be as in the previous lemma. If

f(t) =
P∑

n=1

ane−tn2π2r1 + bne
−tn2π2r2

then there exists C > 0 such that

∫ T

0
|f(t)|2dt ≥ C

P∑

n=1

|an|2 + |bn|2.

5 Appendix

5.1 Proof of Lemma 1

Assume Eq. 7. Define

J(wT ) =
∫

ω

∫ T

t=0

1

2
|B̃∗w(t)|2dtdx + <

∫ 1

0
w(0) · ỹ(0)dx.
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Since J is coercive and strictly convex and continuous, there exists a unique
minimum zT . Setting z(t) = e(T−t)Ã∗zT , the associated Euler equation is :

0 = δwT
J(zT ) =

∫

ω

∫ T

t=0
<(B̃∗w(t)B̃∗z(t))dtdx + <

∫ 1

0
w(0) · ỹ(0) dx. (60)

We now set f̃ = B̃∗z. Then by Eq. 2,

∫ T

0

∫ 1

0
ỹt · w =

∫ T

0

∫ 1

0
Ãỹ · w + χωB̃B̃∗z · w.

Integrating by parts, we get

∫ 1

0
ỹ(T ) · w(T )− ỹ(0) · w(0) dx =

∫

ω

∫ T

0
B̃∗zB̃∗w dt dx.

Taking the real part of this equation and using Eq. 60, we get

<
∫ 1

0
ỹ(T ) · w(T ) dx = 0, ∀w(T ) ∈ H.

It follows that ỹ(T ) = 0. Thus f̃ = B̃∗z is the control that sends ỹ(t) to rest.
Next, we estimate the norm of the control. By Eqs. 60 and 7

∫ T

0

∫ 1

0
|B̃∗z(t)|2dxdt = −<

∫ 1

0
z(0) · ỹ(0)dx

≤ ‖z(0)‖H‖ỹ(0)‖H

≤ (
1

C

∫ T

0

∫ 1

0
|B̃∗z(t)|2dxdt)1/2‖ỹ(0)‖H ,

and hence √
C(

∫ T

0

∫ 1

0
|B̃∗z(t)|2dxdt)1/2 ≤ ‖ỹ(0)‖H ;

this is just a phrasing for Eq. 6
We now prove the converse. To this end, dot Eq. 2 by w, and integrate

by parts in t and x to obtain

∫ 1

0
ỹ(0) · w(0) = −

∫ 1

0

∫ T

0
χωB̃f · w

= −
∫

ω

∫ T

0
fB̃∗w
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Thanks to Eq. 6, we conclude

|
∫ 1

0
ỹ(0) · w(0)| ≤

∫

ω

∫ T

0
|fB̃∗w|

≤ 1√
C

(
∫

ω

∫ T

0
|B̃∗w|2dtdx)1/2‖ỹ(0)‖H , ∀ỹ(0) ∈ H.

Setting ỹ(0) = w(0), Eq. 7 follows. This completes the proof of the lemma.

5.2 Proof of Theorem 2

We now prove that Eq. 17 implies Theorem 2.
The proof follows the argument appearing in [11], except that in their case

the limit problem remains parabolic, whereas in our case the limit problem
is hyperbolic.

In what follows, we will highlight the ρ-dependence of various objects
using the notation fρ, Ã

∗
ρ, etc.

Step 1 By Theorem, there exists C > 0 independent of ρ such that

∫ T

0
‖fρ‖2

ωdt < C, ∀ρ > 0.

It follows that there exists a subsequence, which we again label fρ, such that
fρ→f0 weakly in L2(ω × (0, T )). The Euler equation implies that for any
fixed wT ∈ H,

0 =
∫

ω

∫ T

t=0
<(B̃∗

ρwρ(t)B̃
∗
ρzρ(t))dtdx + <

∫ 1

0
wρ(0) · ỹ(0) dx. (61)

Here wρ solves Eq. 4. Now it is easy to verify, by studying the Fourier
coefficients, that for any fixed wT ∈ L2(0, 1), B̃∗

ρwρ→B̃∗
0w0 in L2((0, 1) ×

(0, T )) and wρ(x, 0)→w0(x, 0) in H. Here w0 is a weak solution to (w0)t +
Ã∗

0w0 = 0, w0(T ) = wT in the sense that

∫ 1

0

∫ T

0
w0 · (−(φ)t + Ãφ) = 0,

∀φ ∈
(
L2((0, T ), H2(0, 1) ∩H1

0 (0, 1)) ∩H1((0, T ), L2(0, 1))
)

×
(
L2((0, T ), H2(0, 1) ∩H1

0 (0, 1)) ∩H1((0, T ), L2(0, 1))
)
,
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such that φ(0) = φ(T ) = 0. (62)

Thus, letting ρ→0 in Eq. 61,

0 =
∫

ω

∫ T

t=0
<(B̃∗

0w0(t)f0)dtdx + <
∫ 1

0
w0(0) · ỹ(0) dx. (63)

It follows that the limit function f0 is a null control for the unperturbed
(ρ = 0) beam equation. To complete the proof of the Corollary, it suffices to
prove the following:

a) the limit f0 is uniquely determined, ie. independent of choice of sub-
sequence,

b) the convergence fρ→f0 is strong.
Step 2 We begin by proving a convergence result for zρ on (0, 1)× (0, T ).

Note that uniform observability inequality holds for any T > 0. In fact,
examination of the argument in Section 4 shows that for any τ < T , we have
that for t ≤ τ and for ρ < ρ0(τ),

‖exp((τ − t)Ãρ
∗
)w‖2

H < C(T − τ)
∫ T

τ

∫

ω
|B̃∗

ρexp(−tÃρ
∗
)w|2dxdt, ∀w ∈ H,

(64)
with C(T − τ)→∞ and ρ0→0 as τ→T . Fixing τ for the moment, we
deduce that for t ≤ τ , ‖zρ(t)‖2

H < C(T − τ) and hence the two compo-
nents of zρ are each bounded in L∞((0, τ), L2(0, 1)). Thus, passing to sub-
sequences, there exists ζ such that zρ→ζ weakly in L∞((0, τ), L2(0, 1)) ×
L∞((0, τ), L2(0, 1)). Since τ < T is arbitrary, it follows that ζ can be defined
to be in L∞loc((0, T ), L2(0, 1))× L∞loc((0, T ), L2(0, 1)). Furthermore, ζ satisfies

∫ 1

0

∫ τ

0
ζ · (Ã0(φ)− φt)dtdx = 0,

∀φ ∈
(
L2((0, τ), H2(0, 1) ∩H1

0 (0, 1)) ∩H1((0, τ), L2(0, 1))
)

×
(
L2((0, τ), H2(0, 1) ∩H1

0 (0, 1)) ∩H1((0, τ), L2(0, 1))
)
,

such that φ(0) = φ(τ) = 0. (65)

It follows that ζ = exp(−tÃ∗
0)ζ(0) for some ζ(0) ∈ H. Since exp(−tÃ∗

0) is
unitary, it follows that ζ ∈ L∞((0, T ), L2(0, 1)). It then follows that ζ =
exp((T − t)Ã∗

0)ζT for some ζT ∈ H. Also, note that B̃∗zρ converges weakly
to B̃∗ζ, hence

B̃∗ζ|ω×(0,T ) = f0. (66)
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Thus Eq. 63 can be rewritten

0 =
∫

ω

∫ T

t=0
<

(
B̃∗

0w0(t)B̃
∗
0ζ

)
dtdx + <

∫ 1

0
w0(0) · ỹ(0) dx. (67)

Step 3
Define the functional J0 : H→R by

J0(wT ) =
∫

ω

∫ T

t=0

1

2
|B̃∗

0w(t)|2dtdx + <
∫ 1

0
w(0) · ỹ(0)dx,

with w a weak solution to the adjoint equation as in Eq. 62,
We now recall the well known observability inequality for the unperturbed

beam equation:

‖ exp(TÃ∗
0)w‖2

L2(0,1) ≤ C
∫ T

0

∫

ω
|B̃∗

0 exp((T − t)Ã∗
0)w|2dxdt,

with C a positive constant independent of w. It follows that J0 achieves a
unique minimum w = ψ which is characterized by the Euler Equation

0 =
∫

ω

∫ T

t=0
<

(
B̃∗

0w(t)B̃∗
0ψ(t)

)
dtdx + <

∫ 1

0
w(0) · ỹ(0) dx, (68)

this holding for all w solution of Eq. 62. Comparing with Eq. 67, it follows
that ψ = ζ. It now follows that the limit functions ζ and f0 are independent
of the choice of subsequence.

Step 3 It remains to show that the convergence of fρ to f0 is strong. For
this, first we show that zρ(x, 0) converges weakly in H to ζ(x, 0). To this
end, note first that by Eq. 7, zρ(x, 0) is bounded in H. Hence there exists
µ(x) ∈ H such that zρ(x, 0)→µ weakly in H. Now let τ ∈ (0, T ) and let
φ ∈ C∞((0, 1) × (0, τ)) × C∞((0, 1) × (0, τ)) vanish on {x = 0}, {x = 1},
and {t = τ}. Dotting the equation (zρ)t + Ã∗

ρzρ = 0 by φ and integrating by
parts, we obtain

∫ τ

0

∫ 1

0
zρ · (φt − Ãρφ)dxdt +

∫ 1

0
zρ(x, 0)φ(x, 0)dx = 0.

Letting ρ→0, we obtain

∫ τ

0

∫ 1

0
ζ · (φt − Ã0φ)dxdt +

∫ 1

0
µ(x)φ(x, 0)dx = 0. (69)

34



Also, replacing φ and ζ by their Fourier expansions and then integrating by
parts shows that

∫ τ

0

∫ 1

0
ζ · (φt − Ã0φ)dxdt +

∫ 1

0
ζ(x, 0)φ(x, 0)dx = 0. (70)

Comparing Eqs. 69 and 70, we get that µ(x) = ζ(x, 0).
Step 4 Finally, by Eq. 63, we have

0 =
∫

ω

∫ T

t=0
|fρ|2dtdx + <

∫ 1

0
zρ(0) · ỹ(0) dx.

Thus we have

lim
ρ→0

‖fρ‖2
L2(ω×(0,T )) = −<

∫ 1

0
µ(x) · ỹ(0)dx

= −<
∫ 1

0
ζ(x, 0) · ỹ(0)dx (71)

Also, by Eqs. 67, 66, we have

∫

ω

∫ T

t=0
|f0|2dtdx = −<

∫ 1

0
ζ(x, 0) · ỹ(0) dx (72)

It follows immediately from Eqs. 71, 72 that limρ→0 ‖fρ‖2
L2(ω×(0,T )) = ‖f0‖2

L2(ω×(0,T )).

Since fρ→f0 weakly in L2(ω × (0, T )), this implies that fρ→f0 strongly in
the same topology.

References

[1] S. Advonin and Ivanov, S. A. ”Riesz bases of exponentials and divided
differences”. (Russian) Algebra i Analiz 13 (2001), no. 3, 1–17; transla-
tion in St. Petersburg Math. J. 13 (2002), no. 3, 339–351

[2] G. Chen and D.L. Russell, ”A mathematical model for linear elastic
systems with structural damping”, Quart. Appl. Math., 39, (1982), 433-
454.

[3] S.W. Hansen, ”Bounds on functions biorthogonal to sets of complex
exponentials; control of elastic damped systems”, J. Math. Anal. Appl.
158 (1991), 487-508

35



[4] A.E. Ingham, ”Some trigonometrical inequalities with applications to
the theory of series”, Mathematicsche Zeitschrift, 41 (1936), 367-379.

[5] V. Komornik and P. Loreti, Fourier series in control theory, Springer
Monographs in Mathematics, 2005.

[6] I. Lasieka and R. Triggiani, ”Exact null-controllability of structurally
damped and thermoelastic parabolic models”, Rend. Mat. Acc. Lincet,
s.9, v.9 (1998), p.43-69.

[7] G. Lebeau and E. Zuazua, ”Null-controllability of a system of linear
thermoelasticity”, Archives Rat. Mech. Anal., 141 (4) (1998), 297-329.
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[9] J.L. Lions, Controlabilité exacte, perturbations, et stabilisation de
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