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Abstract
For complex valued sequences {ωn}∞n=1 of the form ωn = an + ibn with an ∈ R and bn ≥ 0,

we prove inequalities of the form
∫ T
0 |∑∞

n=p xneitωn |2dt ³ ∑∞
n=p |xn|2/(1+bn), for all sequences

{xn} with
∑∞

n=1 |xn|2/(1 + bn) < ∞. We apply these to prove exact null-controllability for a
class of hinged beam equations with mild internal damping with either boundary control or
internal control.

1 Introduction

Let a1 < a2 < . . . be a real valued sequence satisfying the gap condition: there exists a constant
γ > 0 such that

|an − ak| ≥ γ|n− k|, ∀n, k.

Then a theorem due to Ingham [8] states that for all ε > 0, there exist positive constants C1, C2

such that

C1

∞∑

n=1

|xn|2 ≥
∫ 2π/γ+ε

0
|
∞∑

n=1

xneitan|2dt ≥ C2

∞∑

n=1

|xn|2, ∀{xn} ∈ `2.

These inequalities were originally used by Ingham to prove certain estimates on Dirichlet series.
Later they was extended to complex valued sequences by various authors to study linear algebraic
properties of families of exponential functions, see [19],[1] and references therein. More recently,
various extensions have been used to prove controllability properties of systems of partial differential
equations, see [10],[4],[2],[6] and references therein. In several of these works ([19],[2],[6],[1] and
references therein), the sequence {an} was replaced by a complex valued sequence {ωn} with ωn =
an + ibn, but it was always assumed that bn was bounded.

The purpose of this paper is to prove an analogue of Ingham’s inequality for complex valued
sequences with unbounded imaginary part, and to give some applications to null-controllability
problems. Although the Ingham type inequalities proven here were motivated by problems in
control theory, these results might also be of interest in operator theory and in general non-harmonic
analysis.

In what follows, we assume
bn ≥ 0, ∀n. (1)

Theorem 1 Fix T > 0. Suppose there exists a positive integer p̃ and real number r > 1 such that
for k, n ≥ p̃,

|an − ak| ≥ γ max(1, bn)|nr − kr|, (2)

with γ some positive constant. Then there exist C1, C2 > 0 such that following inequalities hold for

some positive integer p ≥ p̃, and for all sequences {xn} with
∑∞

n=1
|xn|2
1+bn

< ∞:

C2

∞∑
n=p

|xn|2
1 + bn

≥
∫ T

0
|
∞∑

n=p

xneiωnt|2dt ≥ C1

∞∑
n=p

|xn|2
1 + bn

. (3)

Note that for ωn satisfying the hypotheses of this theorem, the family of exponentials {eiωnt} will
not be a Riecz basis of L2(0, T ). Following Ingham, we will refer to the first inequality in Eq. 3 as
the ”direct inequality”, and the second as the ”inverse inequality”.

We will show that sequences satisfying the hypotheses of Theorem 1 include an = nq, with q > 1,
and bn ≤ βns, with s ∈ [0, q − 1) and β any positive constant. We also prove the following result:
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Theorem 2 Fix T > 0. Suppose |an − ak| + bn →∞ as min(k, n) →∞, and suppose there exists
a positive integer p̃ such that for k, n ≥ p̃,

|an − ak| ≥ γ max(
π

T
, bn)|n− k|,

with
γ >

√
10π.

Then there exists C > 0 such that following inequality holds for some positive integer p ≥ p̃ and for

all sequences {xn} with
∑∞

n=1
|xn|2
1+b2n

< ∞:

∫ T

0
|
∞∑

n=p

xneiωnt|2dt ≥ C
∞∑

n=p

|xn|2
1 + b2

n

. (4)

Although the conclusions of this theorem are weaker than those for Theorem 1, this theorem does
apply to sequences of the form ωn with an = nq, with q > 1, and bn ≤ 1

γ
nq−1, whereas such sequences

might not satisfy the hypotheses of Theorem 1.
Theorems 1 and 2 can be compared to a result that can be deduced from work of Hansen [7].

Hansen considers sequences {ωn} for which there exists β > 0 such that

bn

|an| ≥ β, (5)

together with the following separation conditions:

|ωn − ωk| ≥ δ̃|nr − kr| (r > 1, δ̃ > 0)

ε(A + Bnr) ≤ |ωn| < A + Bnr. (ε > 0, A ≥ 0, B ≥ δ̃).

Hansen obtains from these hypotheses a sharp upper bound on the family of functions biorthogonal
to {eiωnt} on L2(0,∞). From this bound can be deduced (see [15],Ch.2.Prop.4.1) the following
inequality: ∫ T

0
|
∞∑

n=1

xne
iωnt|2dt ≥ C∑∞

n=1 1/|ωn|
∞∑

n=1

|xn|2
|ωn| e

−2bnT .

Notice that we have bn → ∞ here, so this inequality is much weaker than the inverse inequalities
found in Theorems 1 and 2. However, it is easy to see that Eq. 2 is incompatible with Eq. 5, so the
results in this paper are complementary to the one deduced from Hansen’s work. It seems unlikely
that the stronger inverse inequalities found in this paper can be proven for {ωn} in the region given
by Eq. 5. Indeed, in Example 3 of this paper, we adapt an example due to Ingham to show that
for δ > 0, the sequence ωn = n + iδn does not satisfy the inverse inequalities in Eq. 3, 4, or even
some weaker analogues.

The proofs of Theorems 1 and 2 are inspired by Ingham’s original argument, in which the main
object of analysis is the integral

∫ T
0 g(t)|∑∞

n=1 xne
iωnt|2dt, where g is a carefully chosen continuous

cutoff function which vanishes at x = 0 and x = T . In our proof of Theorem 2, we choose the
truncated sine function originally used by Ingham, adapting his argument to complex frequencies.
In our proof of Theorem 1, we set g equal to the characteristic function for [0, T ]; thus in some
sense we estimate

∫ T
0 |

∑∞
n=1 xne

iωnt|2dt directly. These arguments differ from the methods used in
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[1],[2], where essential use is made of the generating function associated with {ωn}. It appears that
the latter methods, and those surveyed in [10], cannot easily be applied in our setting.

We then apply Theorems 1 and 2 to the null controllability of perturbations of the structurally
damped beam equation with hinged ends. Let ω be an open subset of (0, 1). Let ρ > 0, and $, %
arbitrary reals. Consider the following system, where ∆ = −∂2/∂x2:





utt + ∆2u + ρ(∆2)αut + $uxx + %u = χωf in (0, 1)× (0, T )
u(0, t) = g(t) in (0, T ),
u(1, t) = uxx(0, t) = uxx(1, t) = 0 in (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x), in (0, 1).

Theorem 3 Fix T > 0, ρ > 0, and $, % ∈ R. Assume α < 1/4. Then
A) (Internal controllability). Assume g = 0. Suppose u0 ∈ L2(0, 1), u1(x) ∈ (H2(0, 1) ∩

H1
0 (0, 1))′. Then there exists a function f = f(ρ,$,%) ∈ L2(ω× (0, T )) such that u(x, T ) = ut(x, T ) =

0. Also, ∫ T

0

∫

ω
|f(ρ,$,%)|2dxdt ≤ C(‖u0‖2

L2(0,1) + ‖u1‖2
(H2(0,1)∩H1

0 (0,1))′),

with C independent of u0, u1. Furthermore, for any M > 0, and for ρ,$, % < M , the constant C
can be chosen independent of ρ,$, %.

B) (Boundary controllability). Assume f = 0. Suppose u0 ∈ H1
0 (0, 1), u1(x) ∈ H−1(0, 1). Then

there exists a function g = g(ρ,$,%) ∈ L2((0, T )) such that u(x, T ) = ut(x, T ) = 0. Also,

∫ T

0
|g(ρ,$,%)|2dt ≤ C(‖ ∂

∂x
(u0)‖2

L2(0,1) + ‖( ∂

∂x
(−∆)−1u1)‖2

L2(0,1)),

with C independent of u0, u1. Furthermore, for any M > 0, and for ρ,$, % < M , the constant C
can be chosen independent of ρ,$, %.

Furthermore, if α = 1/4, then there exists ρ0 > 0 such that ρ < ρ0 implies the conclusions of
Parts A and B.

The following follows from Theorem 3 by a standard argument:

Corollary 1 Fix T > 0. Assume α ∈ (0, 1/4].
A) (Internal Controllability) Fix initial conditions u0, u1 as in Theorem 1 part A. Let f(ρ,$,%) ∈

L2(ω × (0, T )) be the associated control function of minimal norm. Then, as ρ + |$| + |%| → 0+,
f(ρ,$,%) converges in L2(ω×(0, T )) to f0, where f0 is a control function for the associated unperturbed
beam equation.

B) (Boundary Controllability) Fix initial conditions u0, u1 as in Theorem 1 part B. Let gρ ∈
L2((0, T )) be the associated control function of minimal norm. Then, as ρ + |$|+ |%| → 0+, g(ρ,$,%)

converges in L2((0, T )) to g0, where g0 is a control function for the associated unperturbed beam
equation.

The system above with f = g = 0 and $ = % = 0 is the one-dimensional version of the mathematical
model for linear elastic systems with structural damping introduced by Chen and Russell in [5].
Internal null-controllability in time for arbitrarily small T for the undamped case (ρ = 0) was proven
in [20]. Various results for boundary control in the undamped case can be found in [13], also see [2].
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For a study of optimal boundary controllability of the damped plate equation, see [18]. Lasiecka
and Triggiani [11] proved the null-controllability of the abstract equation:

wtt + Aw + ρAαwt = u, w(0) = w0, wt(0) = w1, ρ > 0, α ∈ [1/2, 1).

Here A is a strictly positive, self-adjoint unbounded operator with compact resolvent, and the
control u is assumed to be distributed throughout (0, 1). The proof for the case of α ∈ (0, 1/2) was
published in followup papers [3],[16]. Although the framework of these papers is more general than
that appearing in our Theorem 3A (at least for $ = % = 0), their methods seem not to apply to
the case where the control u is confined to a proper subset ω ⊂ (0, 1) as we do here. The paper [11]
was motivated by questions in stochastic processes, and in [16] and [3], the authors address these
questions by studying the rate of blowup of the optimal control as T → 0+. It would be interesting
to make the corresponding study in our setting; however it seems not to be easy (see Remark 5 in
this paper). In [7], Hansen studied the null-controllability of a damped vibrating rectangular plate
equation, with α = 1/2, subject to boundary control on one side, with ρ < 2, but his methods
will also apply to the vibrating beam equation with internal damping to prove boundary null-
controllability in time T for any ρ < 2. However, his proof, which uses a compactness argument,
will not yield estimates on the control that are uniform in ρ.

Finally, the internal controllability of the structurally damped beam equation with hinged ends,
and with $ = % = 0, was studied by Edward and Tebou in [6] for the case α = 1/2. In that setting,
the conclusions of Theorem 3A and Corollary 1A were proven. The method of proof involved
Ingham type inequalities similar to those in Theorem 2, but only applicable to a frequency band of
finite width depending on ρ. The observability estimate for high frequencies used a generalisation
of Bessel’s inequality found in [9] (also see [12]), which in turn follows from a Carleman estimate. It
seems likely that the methods used in [6] would also work to prove the conclusions of Theorem 3A
for α ≤ 1/2 and arbitrary $ and %, but they will not work for Theorem 3B because the generalised
Bessel’s inequality cannot be applied in the setting of boundary control. It should also be pointed
out that the proof we have for Theorem 3A here is much simpler than the corresponding proof in
[6].

This paper will be organized as follows. In Section 2, we will prove Theorems 1 and 2, and
present some examples and a counterexample. Then in Section 3 we will prove Theorem 3.

2 Ingham Inequalities

Let K be a countable index set. Set

x(t) =
∑

k∈K

xke
iωkt. (6)

To avoid questions of convergence, assume for the moment that only finitely many of the xk’s are
non-zero. Theorems 1 and 2 are then completed by a limiting argument, which we sketch at the
end of their proofs. Let g(t) be any real valued function and let G(u) =

∫ T
0 eiutg(t)dt. Thus

∫ T

0
g(t)|x(t)|2dt =

∑

k∈K

∑

n∈K

xkxnG(ωk − ωn)
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=
∑

n∈K

|xn|2G(ωn − ωn) +
∑

n∈K

∑

k∈K,k 6=n

xkxnG(ωk − ωn)

≡ I + II. (7)

In what follows we will study the conditions under which (1− ε)|I| ≥ |II| for some ε > 0. Since

ωk − ωn = (ak − an) + i(bk + bn),

it is easy to see that |G(ωk − ωn)| is symmetric with respect to n and k. Thus,

|∑
n

∑

k;n6=k

xkxnG(ωk − ωn)| ≤ 1

2

∑
n

∑

k;n 6=k

(|xk|2 + |xn|2)|G(ωk − ωn)|

≤ ∑
n

|xn|2
∑

k,k 6=n

|G(ωk − ωn)|.

Comparing this last equation with Eq. 7, we see that if for some ε > 0,

∑

k,k 6=n

|G(ωk − ωn)| ≤ (1− ε)|G(ωn − ωn)|, ∀n ∈ K, (8)

then we have

ε
∑

K

|G(ωn − ωn)||xn|2 ≤
∫ T

0
g(t)|x(t)|2dt ≤ (2− ε)

∑

K

|G(ωn − ωn)||xn|2. (9)

Proof of Theorem 1: We set g(t) = 1 on [0, T ]. Hence, since ωn − ωn = 2ibn,

G(ωn − ωn) =

{
1−e−2bnT

2bn
, bn > 0

T, bn = 0.

Now fix p for the moment, and for n ≥ p let

Q(n) =
∞∑

k=p,k 6=n

1

|kr − nr| .

We will show that
lim

n→∞Q(n) = 0. (10)

Note first that since r > 1, Q(n) absolutely convergent for each n. Also,

Q(n) =
∞∑

j=1

1

(n + j)r − nr
+

n−P∑

j=1

1

nr − (n− j)r
.

The first series is easily seen to converge to zero as n → ∞ by monotone convergence. For the
second series we argue as follows. Simple arguments using the convexity of the function x → xr

imply that both for j < 0 and for 0 < j < n,

|1− (1− j

n
)r| ≥ |j/n|. (11)
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Hence

n−p∑

j=1

1

nr − (n− j)r
= n−r

n−p∑

j=1

1

1− (1− j/n)r

< n−r
n−p∑

j=1

1

j/n

< Cn−r+1 ln(n).

Since r > 1, the vanishing of the second series follows.
Now choose p such that n ≥ p implies

Q(n) < max(
γ(1− e−2T )

8
,
Tγ

4
). (12)

Let K = {p, p + 1, . . .}.
∑

k,k 6=n

|G(ωk − ωn)| ≤
∞∑

k=p,k 6=n

|1− ei(ak−an)T−(bn+bk)T |√
(an − ak)2 + (bn + bk)2

≤
∞∑

k=p,k 6=n

2√
(an − ak)2 + (bn + bk)2

.

In the case bn > 1, we have for n ≥ p

∞∑

k=p,k 6=n

2√
(an − ak)2 + (bn + bk)2

≤ 1

bn

∞∑

k=p,k 6=n

2

γ|nr − kr|

≤ 1− e−2bnT

4bn

.

Now consider the case bn ≤ 1. A calculus exercise shows that 1−e−2bnT

2bn
is a decreasing function of

bn on [0, 1], and is thus has minimum value (1− e−2T )/2. Hence for bn 6= 0,

∞∑

k=p,k 6=n

2√
(an − ak)2 + (bn + bk)2

≤
∞∑

k=p,k 6=n

2

γ|nr − kr|

≤ 1− e−2T

4

≤ 1− e−2bnT

4bn

,

while for bn = 0,

∞∑

k=p,k 6=n

2√
(an − ak)2 + (bn + bk)2

≤
∞∑

k=p,k 6=n

2

γ|nr − kr|

<
T

2
.
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Thus in any case,
∑

k,k 6=n

|G(ωk − ωn)| ≤ 1

2
G(ωn − ωn).

Noting that there exist C̃1, C̃2 > 0 such that

C̃1

1 + bn

≤ G(ωn − ωn) ≤ C̃2

1 + bn

,

the theorem for K finite now follows easily from Eqs. 8, 9. In the case that K is infinite, we argue as
follows. First, we note that

∑
K xneiωnt is convergent in L2(0, T ). This because the direct inequality

for finite sequences implies
∫ T

0
|

m2∑
n=m1

xneiωnt|2dt ≤ C
m2∑

n=m1

|xn|2
1 + bn

,

for positive constant C, and hence the sequence m → ∑m
n=p xneiωnt is Cauchy in L2(0, T ). Now set

set Km = {n ∈ K; n ≤ m}. Thus Eq. 3 holds for the set Km. Letting m →∞, we obtain Eq. 3 for
K. The proof of Theorem 1 is complete.

Remark 1: In the proof of Theorem 1, we could also choose K = {p, p+1, . . .}∪{−p,−p−1, . . .}.
In this case, the hypothesis should be that for |k|, |n| ≥ p̃,

|an − ak| ≥ γ max(1, bn)|sgn(n)|n|r − sgn(k)|k|r|.
Here

sgn(n) =

{
1 n > 0,
−1 n < 0.

It is then easy to adapt the proof of Theorem 1 to this case. We will use this observation in Section
3.

Example 1 Set an = nq with q > 1 and bn ≤ βns for some β > 0 and s ∈ [0, q − 1). Let
r ∈ (1, q − s). We will show that there exists a constant C > 0 such

|nq − kq| ≥ Cns|nr − kr|; (13)

Theorem 1 will then apply immediately. Trivially, Eq. 13 holds for k = n. Now let C = q/(2r + s).
For n > k, note that

(∂/∂n − ∂/∂k)(n
q − kq) = q(nq−1 + kq−1)

= C(2r + s)(nq−1 + kq−1)

> C(r + s)nr+s−1 + Crnskr−1

> Csns−1(nr − kr) + Crnsnr−1 + Crnskr−1

= (∂/∂n − ∂/∂k)(Cns(nr − kr)).

Eq. 13 now follows immediately for this case. In the case that k > n, we note that

(∂/∂k − ∂/∂n)(kq − nq) = q(kq−1 + nq−1)

≥ Cr(kr−1+s + nr−1+s)

> Cr(nskr−1 + nr−1+s)

> −Csns−1(kr − nr) + Crnsnr−1 + Crnskr−1

= (∂/∂k − ∂/∂n)(Cns(kr − nr)).
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Remark 2: Let K = {1, 2, . . .}. If we choose an = Lnr with L sufficiently large and bn as in
Example 1, the arguments appearing there will yield Eq. 3 with p = 1.

Proof of Theorem 2: We apply the argument from the beginning of this section to a test
function used by Ingham in [8]:

g(t) =

{
sin(tπ/T ), t ∈ [0, T ],

0, otherwise;
(14)

thus its Fourier transform G satisfies

G(u) =
π

T

1 + e−iuT

π2

T 2 − u2
.

Hence, in the notation of Eq. 7

I =
π

T

∑

n∈K

(1 + e−2bnT )|xn|2
π2

T 2 + 4b2
n

. (15)

We now estimate II. Choose ε > 0 so (1 − ε)γ2 > 5(2 + ε)π. Let K = {p, p + 1, . . .}, with p to be
chosen below. Since |an − ak|+ bn →∞ as min(k, n) →∞, there exists P such that for n ≥ p,

∞∑

k=p,k 6=n

| 1 + e−i(an−ak)T−(bn+bk)T

π2

T 2 − ((an − ak)− i(bn + bk))2
| ≤

∞∑

k=p,k 6=n

2 + ε

(an − ak)2 + (bn + bk)2
.

We now consider separately the cases bn ≥ π/T and bn < π/T . For bn ≥ π/T ,

∞∑

k=p,k 6=n

2 + ε

(an − ak)2 + (bn + bk)2
≤ 1

b2
n

∞∑

k=p,k 6=n

2 + ε

(γ|n− k|)2 + (1 + bk/bn)2

≤ 4 + 2ε

b2
n

∞∑

j=1

1

γ2j2

<
1− ε

5b2
n

<
1− ε

π2

T 2 + 4b2
n

.

For bn < π/T ,

∑

k=p,k 6=n

2 + ε

(an − ak)2 + (bn + bk)2
≤ 2 + ε

(π/T )2

∑

k=p,k 6=n

1

(γ|n− k|)2

≤ 4 + 2ε

(π/T )2

∞∑

j=1

1

γ2j2

<
1− ε

5(π/T )2

<
1− ε

π2

T 2 + 4b2
n

.
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In both cases, we conclude that

II ≤ (1− ε)
π

T

∑

n∈K

|xn|2
π2

T 2 + 4b2
n

≤ (1− ε)I.

The theorem for K finite now follows easily from Eqs. 8, 9. For K infinite, set Km = {n ∈ K; n ≤
m}. Thus Eq. 4 holds for the set Km. Letting m → ∞, we obtain Eq. 3 for K. The proof of
Theorem 2 is complete.

Remark 3: With a weaker hypothesis on the constant γ, an equation of the form

∫ T

0
|
∞∑

n=p

xne
iωnt|2dt ≥ ε

∞∑
n=p

|xn|2
1 + bM

n

with M > 2 can be proven. To prove such an inequality, the function k must be chosen to be more
regular than the choice above (see [6]).

Example 2. Set an = nq with q > 1 and bn ≤ nq−1/γ, with γ is in Theorem 2. Mimicking the
arguments in Example 1 leading to Eq. 13, we get

|nq − kq| ≥ nq−1|n− k|.
If we choose p sufficiently large, then n ≥ p implies nq−1 ≥ γπ/T . Since also nq−1 ≥ γbn, it follows
that

|nq − kq| ≥ γ max(
π

T
, bn)|n− k|.

Theorem 2 now applies.
Example 3
The following counterexample is an adaptation of a counterexample due to Ingham [8]. Fix

T, δ > 0. We will show that for the sequence ωn = n+ iδn, there exists no trio of positive constants
m, p and C, with m, p integers, such that for the index set K = {p, p + 1, . . .},

∫ T

0
| ∑

n∈K

xneiωnt|2dt ≥ C
∑

n∈K

|xn|2
n2m + 1

, ∀{xn} ∈ `2(K). (16)

Suppose such m, p and C exist. Let H(z) = (1 + z)−1/2, choosing the branch line as the ray
(−∞,−1). Set

G(z) = H(z)−
m+p−1∑

n=0

H(n)(0)zn

n!
.

Thus, G is holomorphic for <z > −1, and for |z| < 1 we have a Taylor expansion of the form

G(z) =
∞∑

n=m+p

anzn,

with an = (2n)!/(2nn!)2. Note that for r < 1,

1

2π

∫ π

−π
|G(reit)|2dt =

∞∑

n=m+p

|an|2r2n. (17)
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Let g(z) = dm

dzm G(z). Thus g is holomorphic in <z > −1, and for |z| < 1 we have

g(z) =
∞∑

n=p

bnzn,

with
bn = an+m · (n + m) · (n + m− 1) · . . . · (n + 1).

Let

f(t) = g(reit−δt) =
∞∑

n=p

bnr
neit(n+iδn).

It is straightforward to calculate that

bn =
an+m(n + m)!

n!

=
(2n + 2m)!(n + m)!

(2m+n(n + m)!)2n!

≤ knm

for some positive constant k, and hence bnrn ∈ `2(K) for each r < 1. Hence, if Eq. 16 were to hold,
then we would have ∫ T

0
|f(t)|2dt ≥ C

∞∑
n=p

|bn|2r2n

n2m + 1
. (18)

Note that

∞∑
n=p

|bn|2r2n

n2m + 1
≥

∞∑
n=p

|bn|2r2n

((n + m) · (n + m− 1) · . . . · (n + 1))2

=
∞∑

n=p

|an+m|2r2n

= r−2m
∞∑

n=m+p

|an|2r2n

=
r−2m

2π

∫ π

−π
|G(reit)|2dt. (19)

Combining Eqs. 18 and 19, we would get

∫ T

0
|f(t)|2dt ≥ Cr−2m

2π

∫ π

−π
|G(reit)|2dt.

However, it is easy to see that f(t) is continuous on [0, T ], uniformly in r for r ∈ [0, 1]. Thus the
left hand side of the last equation is bounded as r → 1−, while it is easy to verify that the right
hand side tends to infinity. This is absurd, hence C, p and m do not exist.

Remark 4: The author believes that Eq. 16 will also fail for ωn = n + iδnα for any α > 0.
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3 Proof of Theorem 3

Proof of Theorem 3A: Assume for the moment that α < 1/4. At the end of this section, we will
indicate the simple modifications necessary for α = 1/4. We use the well known HUM method of
Lions [14],[13]. The associated adjoint equation is





vtt + ∆2v − ρ(∆2)αvt + $vxx + %v = 0 in (0, 1)× (0, T )
v(0, t) = v(1, t) = vxx(0, t) = vxx(1, t) = 0 in (0, T )
v(x, T ) = v0(x), vt(x, T ) = v1(x), in (0, 1),

with (v0, v1) ∈ [H2((0, 1)) ∩H1
0 ((0, 1))]× L2((0, 1)). It will be convenient to apply Theorem 1 with

parameter set K = {±p,±(p + 1), . . .} (see Remark 1). Thus we write the solution of the adjoint
problem as

v(x, t) =
∑

n∈Z−{0}
sin(nπx)cneωn(t−T ),

with cn determined by v0, v1, and

ωn =





1
2
(ρn4α +

√
ρ2n8α − 4(n4 −$n2 + %)), n > 0,

1
2
(ρ|n|4α −

√
ρ2|n|8α − 4(n4 −$n2 + %)), n < 0.

Note that since we assume ρ, %, ϕ < M and α < 1/4, we can (and do) choose p such that
|n| ≥ p implies ρ2|n|8α − 4(n4 − $n2 + %) < 0. Thus, in the notation of Remark 1, an =

sgn(n)
√

n4 −$n2 − ρ2|n|8α/4 + % and bn = ρ|n|4α/2.

In what follows, we will denote by C various constants. Let ‖f‖2 =
∫ 1
0 |f(x)|2dx. Let

vp(x, t) =
∑

|n|≥p

sin(nπx)cneωn(t−T ),

with p to be determined below. To prove Theorem 3A, it is well known that it suffices to prove the
following observability estimate:

∫

ω

∫ T

0
|(vp)t|2dtdx ≥ C(‖∆vp(∗, 0)‖2 + ‖(vp)t(∗, 0)‖2), (20)

with p and C independent of ρ. Since α < 1/4, we have

‖∆vp(∗, 0)‖2 + ‖(vp)t(∗, 0)‖2 ≤ C
∑

|n|≥p

n4|cn|2e−ρn4αT (21)

To bound
∫
ω

∫ T
0 |(vp)t|2dtdx from below, first note that increasing p if necessary, n ≥ p implies there

exist constants κ1, κ2 > 0 such that

n2(1− κ1/n
2) ≤ an ≤ n2(1 + κ2/n

2).

We conclude that, increasing p if necessary, |n| ≥ p implies there exists γ > 0 such that for
|n|, |k| ≥ p,

|an − ak| ≥ γ|sgn(n)n2 − sgn(k)k2|. (22)

12



Applying the argument appearing in Example 1, we see that for r ∈ (1, 2− 4α),

|an − ak| ≥ Cn4α|sgn(n)|n|r − sgn(k)|k|r|
≥ max C(1, bn)|sgn(n)|n|r − sgn(k)|k|r|.

Hence, noting Remark 1, we apply Theorem 1 to conclude that with K = {p, p+1, . . .}∪{−p,−(p+
1), . . .}, we have

∫

ω

∫ T

0
|(vp)t|2dtdx =

∫

ω

(∫ T

0
| ∑

n∈K

cnωn sin(nπx)eωn(t−T )|2dt

)
dx

≥ C
∫

ω

( ∑

n∈K

|ωncn sin(nπx)|2
1 + ρn4α/2

)
dx

≥ C

( ∑

n∈K

n4|cn|2
1 + ρn4α/2

)
. (23)

Finally, we observe that for each T > 0, there exists C > 0 such that

1

1 + x/2
≥ Ce−xT , ∀x > 0.

This, along with Eqs. 21 and 23, gives us Eq. 20.
Proof of Theorem 3B: the observability inequality associated with this system is:

∫ T

0
|∂vp

∂x
(0, t)|2dt ≥ C(‖∂vp

∂x
(∗, 0)‖2 + ‖ ∂

∂x

(
(−∆)−1(vp)t(∗, 0)

)
‖2), (24)

with (v0, v1) ∈ H1
0 ((0, 1))×H−1((0, 1)) Note that the associated adjoint system is the same as that

for Theorem 3A. We compute

‖∂vp

∂x
(∗, 0)‖2 + ‖ ∂

∂x

(
(−∆)−1(vp)t(∗, 0)

)
‖2 ≤ C

∑

|n|≥p

(n2 + |ωn|2/n2)|cn|2e−ρ|n|4αT

≤ C
∑

|n|≥p

n2|cn|2e−ρ|n|4αT . (25)

Applying the same Ingham-type estimate as for the proof of Part A,

∫ T

0
|∂vp

∂x
(0, t)|2dt =

∫ T

0
| ∑

|n|≥p

n2π2cne
ωn(t−T )|2dt

≥ C
∞∑

|n|≥p

n4|cn|2
1 + ρn4α/2

. (26)

The proof is completed by combining Eqs. 25 and 26.
Finally, we discuss the case α = 1/4. In this case, we must adapt the argument in Example

2. Since βn = ρ|n|/2, we have βn ≤ np−1/γ provided ρ ≤ 2/γ. Thus for ρ ≤ 2/γ, the proofs of
Theorem 3A and 3B can easily be mimicked, with Theorem 2 taking the place of Theorem 1.
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Remark 5: As in [3],[16], it is natural to investigate the norm of the optimal control for 3A
and 3B as T → 0+. To this end, we consider the dependence on T of various constants appearing
in Theorem 1. The Ingham type estimate holds for the frequencies corresponding to |n| ≥ p, but
in view of Eq. 12, we would need p = O(T−1) for the diagonal terms to dominate the off-diagonal
terms in the proof of Theorem 1. In addition, it is easy to see that the constants C1, C2 appearing
in Theorem 1 are both O(1/T ) as T → 0+. Thus for |n| ≥ p, the norm of the optimal control
is O(1/T ). Because p → ∞ as T → 0+, it is unclear how to obtain a satisfactory bound on the
norm for the frequencies corresponding to 1 ≤ |n| ≤ p. Triggiani in [16], also see [17], obtains such
an estimate for the case of a distributed control, but his argument does not seem to apply in our
settings.

Acknowledgements. I wish to thank Louis Tebou for many helpful discussions.
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