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Workflow for fast lipid tissue screening using LESA-FT-ICR-MS

Recent studies have shown the potential of lipids biomarkers
for disease screening and treatment. In this paper, we showcase
a fast workflow for ambient, lipid screening from biological
surfaces using LESA-FT-/CR MS/MS.
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Lipid screening of biological substrates is an important step during biomarker detection and identification. In
this work, a fast workflow is described capable of rapid screening for lipid components from biological
tissues at ambient pressure based on liquid microjunction extraction in tandem with nano-electrospray
ionization (nESI) with ultra-high resolution mass spectrometry, i.e., liquid extraction surface analysis (LESA)
coupled to Fourier-transform ion cyclotron resonance (tandem) mass spectrometry (LESA-FT-ICR-MS/MS).
Lipid profiles are presented for thin tissue sections of mouse brain (MB) and liver (ML) samples, analyzed in
both positive and negative mode by data-dependent acquisition (DDA) tandem FT-ICR-MS/MS. Candidate
assignments were based on fragmentation patterns using mostly SimLipid software and accurate mass using

mostly the LipidMaps database (average sub-ppm mass error). A typical, single point surface analysis (<1 mm
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Introduction

Lipids are important components of living cells and frequently
mediate biological processes." Changes to a cell's environment
are rapidly translated into changes in its lipid composition,
making it an attractive target for biomarker discovery and
disease screening and treatment.'”* Lipid analyses are typically
performed using mass spectrometry (MS)."*™*

Lipid MS analyses can be undertaken at several levels. For
example, the sum composition of the fatty acids constituting
a lipid can be obtained with an exact mass MS measurement (e.g:
PC(40:6)); moreover, tandem MS (MS/MS) experiments, such as
collision induced dissociation (CID), can further allow to elucidate
the length and the number of double bonds of each of the fatty
acid chains (e.g. PC(20:2_20:4)). The double bond positions on the
fatty acid chains can also be investigated through specific frag-
mentation techniques.”™ The coupling of different separation
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corresponding to 10-30% of the lipid m/z identifications.

techniques in front of the MS analysis, such as liquid chroma-
tography (LC) or ion mobility (IM), can add an additional sepa-
ration dimension to the MS lipid characterization.>">™

The challenges for global mass spectrometry analyses of
lipids (lipidomics) are twofold. First, the sample preparation
can bias the lipid composition by selecting only a partial lipid
content of the sample.** Second, the mass spectrometry anal-
ysis must be capable of detecting both low and high abundance
species, with a high resolving power and mass accuracy in order
to resolve and confidently identify isobaric lipids. The latter
challenge can be addressed by using instruments such as
Fourier-transform ion cyclotron resonance mass spectrometers
(FT-ICR MS). The choice of the sample preparation however
depends on the ionization method used for the mass spec-
trometry analysis. For tissue analyses, imaging techniques such
as secondary ion mass spectrometry (SIMS) or matrix assisted
laser desorption ionization (MALDI) mass spectrometry are
often used.”*® Ionization suppression and the matrix choice
potentially bias the observed lipid composition.>***** When
using electrospray ionization (ESI), the MS analyses are usually
preceded by LC separations with long separation gradients (up
to 2 hours) depending on the LC column, the LC solvent
conditions, and the number of lipid classes.*® LC-LC couplings
have shown some advantages in lipid separations, with the
tradeoff of increased analysis times.>"

An alternative to lipid extraction (e.g., LC-MS/MS) or
surface mapping (i.e., desorption electrospray ionization
(DESI)**** or MALDI), is liquid extraction surface analysis

Anal. Methods, 2019, 11, 2385-2395 | 2385


http://crossmark.crossref.org/dialog/?doi=10.1039/c8ay02739k&domain=pdf&date_stamp=2019-05-07
http://orcid.org/0000-0002-0315-1846
http://orcid.org/0000-0002-1283-4390

Analytical Methods

(LESA) in which a liquid microjunction between the surface
and an extraction tip is created, followed by direct nano-
electrospray infusion.**>” In a LESA experiment, the solvent
(or solvent mixtures) of choice can direct the type of chemical
class that is extracted (e.g.,. lipids or proteins).**** The choice
of solvent composition in LESA can favor the extraction of
certain lipid classes.**™*® When compared to an LC-MS/MS or
a MALDI-MS/MS experiment, LESA-MS/MS significantly
decreases the sample preparation time and potential ioniza-
tion suppression bias (e.g., MALDI matrix). Moreover, LESA
experiments lead to continuous sample infusions during
several minutes, which allows performing MS/MS measure-
ments for lipid identification, with the potential of adding
spatial tissue profiling to the analyses.*

Here, we developed a fast, lipid screening workflow based on
LESA-FT-ICR-MS and MS/MS for ambient analysis of thin tissue
sections. Examples shown include mouse brain and mouse liver
analyzed using data dependent acquisition (DDA) with ultra-
high mass resolution and high mass accuracy in positive and
negative ion mode. Candidate lipid assignments were per-
formed using different databases, based on MS/MS fragmen-
tation patterns, as well as on MS1 accurate mass measurements
(<3 ppm mass accuracy database searches).

Experimental
Thin tissue sections

Liver and brain from wildtype mice (extraneous tissue from
culled animals) were the gift of Prof. Steve Watson (University of
Birmingham). Organs were frozen on dry ice prior to storage at
—80 °C. Sections of murine liver tissue and brain tissue of area
~1.5 cm” were obtained at a thickness of 10 um using a CM1850
Cryostat (Leica Microsystems, Wetzlar, Germany) and thaw
mounted onto glass slides.

LESA-MS/MS analysis

Thin tissue section samples were loaded onto a universal LESA
adapter plate and placed in the TriVersa Nanomate chip-based

LESA-FT-ICR
Lipid tissue extraction
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Fig. 1 LESA-FT-ICR workflow developed in this study.
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Fig. 2 Positive (a) and negative (b) ionization mode LESA-FT-ICR MS
spectra of mouse brain (top, blue) and of mouse liver (bottom, red).
The vertical lines on top of each spectrum represent the monoisotopic
m/z peaks extracted for identification. The orange markers denote MS/
MS identified peaks. The m/z peaks with unique and multiple lipid
identifications are highlighted with pink and black markers. As proof-
of-concept, the negative mode analysis of MB was subjected to tar-
geted MS/MS experiments using MS1 accurate mass assignments
(highlighted with green triangular markers).
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Fig. 3 Extract from the mouse liver mass spectrum in negative mode
from m/z 738.2 to 738.8. The black vertical lines represent the mon-
oisotopic m/z peaks extracted for identification. The orange markers
denote MS/MS identified peaks. The m/z peaks with unique and
multiple lipid identifications are highlighted with pink and black
markers.
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electrospray device (Advion, Ithaca, NY) coupled to a 7T Solarix
XR FT-ICR MS (Bruker Daltonics, Germany). The solvent was
EtOH/H,O/HCOOH 80/19.9/0.1 (v/v/v). It allowed to extract
similar lipid classes as with other solvent mixtures.*** A total of
6 pL were aspirated from the solvent well. The robotic arm
relocated to a position above the tissue and descended to
a height 0.2 mm above the surface of the sample. A total of 3 pL
of the solution was dispensed onto the sample surface to form
a liquid microjunction. The liquid microjunction was main-
tained for 5 seconds; then 3.5 uL were reaspirated into the pipet
tip. This liquid dispensing and reaspiration was repeated twice
before MS injection.

The FT-ICR MS instrument was operated in both negative and
positive ionization mode and data were collected for 15 minutes.
Data dependent acquisition of MS/MS spectra was performed
using the AutoMS/MS function and spectra were recorded with
500 kW. CID was utilized as a fragmentation tool (typically 15-35
eV), with nominal mass quadrupole isolation prior to injection
into the CID cell. Spectra were externally calibrated using
a Tuning Mix solution (Agilent, SC)** and internally calibrated
using single point correction with identified lipids. For example,
the internal recalibration was performed using PC(34:1) (m/z =
760.5851) for MB and using PC(34:2) (m/z = 758.5694) for ML in
positive mode and PC(34:1) (m/z = 804.5760) for MB and using
PC(34:2) (m/z = 802.5604) for ML in negative mode. Data was
analyzed using Data Analysis 5.2 (Bruker Daltonics, Germany)
and SimLipid software (Premier Biosoft, US). Assignments were
manually curated using Alex123 (ref. 51) and the LIPID MAPS
Lipidomics Gateway.>** MS1 exact mass identifications were
performed using the LIPID MAPS Lipidomics Gateway*>** with
a £ 3 ppm mass error search criterion. During lipid candidate
assignments, protonated species (with and without the loss of
H,O0 according to the lipid class), sodium and potassium cation
adduct species were considered for positive mode; deprotonated
species, chloride and formate anion adduct species were
considered for negative mode analysis. Lipids with odd sum
compositions were discarded as biologically unlikely when
multiple identification possibilities were found, but the assign-
ments were kept if they constituted unique identifications within
the + 3 ppm mass error search. MS1 exact mass measurements
were recorded with 4 MW and 2 MW for positive and negative
modes, respectively. The mass resolution was around 170 000 at
m/z 760.5851 and 758.5694 for positive mode MB and ML,
respectively and around 60 000 at m/z 804.5760 and 802.5604 for
negative mode MB and ML, respectively. For data completeness,
targeted MS/MS after preliminary MS1 lipid assignment was
performed on species where only little interfering m/z peaks were
found in the spectra, using an Impact Q-ToF instrument (Bruker
Daltonics Inc., Billerica, MA).

Results and discussion

The fast lipid screening workflow is based on LESA of thin
tissue sections (without any other surface treatment) followed
by ultra-high-resolution MS/MS analysis (see Fig. 1). The full-
scan MS1 analyses and DDA MS/MS take advantage of the
ultra-high mass resolution and high mass accuracy of the FT-
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ICR mass spectrometers. For example, during DDA using CID
as a fragmentation method, typical neutral losses and lipid
headgroups were utilized during candidate assignment with
high mass accuracy. While not the focus of this paper, it
should be noted that other MS/MS fragmentation techniques
(e.g., EID, OzID, CTD)*™** may be easily implemented and
provide better and/or complementary structural information
during lipid candidate assignment. In the proposed workflow,
an initial search provides candidate lipids from the DDA
dataset. Following DDA interpretation, the MS1 spectrum is
processed (i.e., internal single point correction) and a list of
monoisotopic m/z signals is created. This list is used to search
among lipid databases using mass accuracy as a criterion. In
many cases, the accurate mass database search will return
multiple lipid hits, which will require secondary analysis (e.g.,
targeted MS/MS experiments). While not currently imple-
mented, online processing of the MS1 scan using accurate
mass lipid database searches can be performed to retrofit the
DDA acquisition target list; this procedure can be easily
implemented during static nESI since no major changes in
the spray occur during 15 minutes, and each MS/MS acqui-
sition requires typically 10-20 seconds.

The LESA-FT-ICR-MS (MS1 and MS/MS) analysis of two
biological substrates (i.e., mouse brain, MB, and mouse liver,
ML) resulted in the unique identification (within a + 3 ppm
database search for MS1) of distinct lipids from 38 different
lipid classes in the 400-1000 m/z range. The unsupervised
analysis resulted in the identification of ~190 (MB) and ~590
(ML) monoisotopic m/z peaks as lipids. Despite the biological
complexity, 10-30% of these lipid identifications yielded
unique lipid assignments (in contrast to multiple lipid
assignments to one m/z peak; see Fig. 2). The comparison of
the MB and ML MS1 profiles (either positive or negative
ionization mode) shows abundant lipid signal in the 700-900
m/z range. Overall, a larger number of monoisotopic m/z
peaks were observed and picked in the ML sample when
compared to the MB sample (e.g., 226(MS+)/2215(MS—) for
ML and 157(MS+)/174(MS—) for MB (see ESI Fig. SI1{ for an
extract of the negative mode spectra)). Fig. 3 highlights the
importance of performing these analyses using ultra-high-
resolution mass spectrometers such as FT-ICR. Between m/z

a. Mouse Brain MS+ b. Mouse Brain MS-

garg Fieer L s1py -
CAR1 "
SARL~ ps1

LPI1
DG 1
CerP 1

PS2 H
PC 16}
LPS 2

\
LacCer 2 sQDbG 2

LPC3
SHexCer 3
LPE 3
PC3

PE 10

c. Mouse Liver MS+

HexCer 3

Paper

Fig. 5 Diagram of the lipid compositions (lipid classes) of healthy
mouse brain and mouse liver samples identified from LESA-FT-ICR-
MS (MS/MS and MS1) measurements, including both positive and
negative ionization modes. The circle overlap represents the number
of distinct lipids from the different lipid classes which were found in
both tissues.

738.2 and 738.8, 5 out of the 6 m/z values were correlated to
lipid identifications.

In positive mode, the most intense m/z peaks with unique
lipid identifications correspond to phosphatidylcholines (PC) in
the MB and ML samples, with minor lipid signals correspond-
ing to PE, LPC, DG, MGDG, SM, PS, CAR, Cer, HexCer, LPS,
LacCer, LPIP, MG, PI-Cer, S1P, DGDG, LPA, MIPC and PG (see
Table 1 and Fig. 4a and c; all abbreviations are described in the
ESIt). For the case of PC, the AutoMS/MS identification (without
fatty acid chain or double bond identification) relied mostly on
the detection of the headgroup and the neutral loss of a fatty
acid chain; other lipids assignments were mostly based on MS1
accurate mass. Tables SI1 and SI2 in the ESIf summarize all
MS1 m/z signals with multiple lipid identifications within the +
3 ppm database search. It should be noted that multiple
adducts were observed for the most abundant lipids, increasing
the confidence during their identifications. All uniquely-
identified lipids yielded sub-ppm average m/z deviations (e.g.,
0.70 ppm for MB and —0.85 ppm for ML).

In negative mode, the lipid classes with the most unique
identifications correspond to phosphatidylethanolamines (PE),
LPE, PC and SHexCer in MB, and to phosphatidylserines (PS),
fatty acyls (FA), glycerophosphoglycerols (PG) and LPS in ML

d. Mouse Liver MS- _sHexcer1

SHexSph 3 _SM 3 _PIP2 WE |2 CAR

Pl-Cerl g1p1q
PC15

DG7

MGDG6 LPE11

SM4

DG 8
Cer9 1G9 PCY

LPC5

Fig. 4 Representations of the identified lipid classes in MB and ML (from both MS/MS and MS1), weighted by the number of unique and distinct
lipid identifications for each class. (a and c) represent positive ionization for MB and ML, respectively, and (b and d) represent negative ionization

for both samples.
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(see Fig. 4b and d, Tables SI3 and SI4}). Most of the AutoMS/MS
assignments were based on the observation of the fatty acid
losses and fragments; other lipids assignments were mostly
based on MS1 accurate mass (see ESI Tables SI3 and SI4f).
Tables SI5 and SI6 in the ESIf summarize all MS1 m/z signals
with multiple lipid identifications within the + 3 ppm database
search. For example, 64 out of the 174 picked m/z values for MB
and 437 out of the 2215 values for ML were identified with
unique or multiple matches. Further dataset descriptions can
be found in Fig. SI2{ for both MB and ML in positive and
negative ionization. All uniquely-identified lipids yielded sub-
ppm average mj/z deviations (e.g., 0.27 ppm for MB and
0.02 ppm for ML).

An estimate of the specificity of the LESA-FT-ICR-MS
workflow as a function of the biological surface was ob-
tained from the comparison of the unique lipid assignments
in the MB and ML (see Fig. 5, including both positive and
negative mode MS1 and MS/MS identifications). 25 lipids
were found common to the MB and ML, with the most
abundant being 8 PC, 3 PE, 3 LPE, and 3 LPC. One lipid from
the LPI, LPS, MG, S1P, SHexCer, SM, SQDG, and TG classes
were found to be common. In the case of MB, 20 different lipid
classes were identified (ranked according to the number of
identified lipids: PC, PE, LPS, LPE, LPC, SHexCer, PS, SQDG,
LacCer, SM, PG, Cer, DG, TG, LPI, CerP, PI-Cer, MG, CAR, and
S1P). The most abundant lipid class for MB was PC (16 lipids),
followed by PE (15 lipids) (see Table SI7t). In the case of ML,
38 different lipid classes were identified (ranked according to
the number of identified lipids: PS, FA, PC, PE, PG, LPS, LPE,
Cer, DG, TG, MGDG, LPC, LPA, SQDG, LPI, LPG, PA, MG, PI,
LacCer, SM, CerP, PI-Cer, HexCer, LacSph, LPIP, NAE,
SHexSph, CAR, MIPC, PIP, WE, SHexCer, S1P, DGDG, HexSph,
NAT, and PE-Cer). The most abundant lipid class for ML was
PS (28 lipids), followed by FA and PC (19 lipids each), and PE
(16 lipids) (see Table SI5t).

An example of the use of targeted MS/MS following the MS1
accurate mass search is shown for the case of MB in negative ion
mode (see Table 2). The added fragment ion information
enables the exclusion of accurate mass identifications as well as
to increase the structural information. For example, the iden-
tification of PE (22:6_16:0) (m/z = 762.5079) and PE (20:4_18:0)
(m/z = 766.5393) is illustrated in Table 2.

Conclusions

A fast and high-throughput analysis workflow for lipid
screening in biological tissues at ambient conditions without
the need for pre-separations or sample treatment is shown. The
LESA-FT-ICR MS(/MS) analysis of mouse brain and liver
sections resulted in the identification of 38 lipid classes in
a single analysis (<15 min), with lipid markers specific to each
tissue. The combination of accurate mass and AutoMS/MS
resulted in the identification of unique and common lipid
molecules from the biological tissues, with average sub-ppm
mass accuracy. The workflow was presented using CID as
a proof of concept, but other fragmentation techniques
providing further structural lipid information are equally

2394 | Anal. Methods, 2019, 11, 2385-2395
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suitable. The most abundant lipid species are typically observed
and identified in several adduct forms (e.g., protonated, sodi-
ated and potassiated), thus increasing the confidence in the
molecular assignment. In the examples shown, ~190 (MB) and
~590 (ML) m/z values were identified by unique or multiple
lipid assignments in positive and negative mode, with 10-30%
of these identifications being unique and distinct lipids
assignments. In addition to MS analysis, further integration of
post-ionization ion mobility separation can provide additional
structural information.*>™**
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