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ABSTRACT: Recently, we proposed a high-throughput screening workflow for the elucidation of agonistic or antagonistic
growth hormone - releasing hormone (GHRH) potencies based on structural motif descriptors as a function of the starting
solution. In the present work, we revisited the influence of solution and gas-phase GHRH molecular micro-environment
using trapped ion mobility - mass spectrometry (TIMS-MS). The effect of the starting solvent composition (10 mM
ammonium acetate (NH4Ac), 50% methanol (MeOH), 50% acetonitrile (MeCN) and 50% acetone (Ac)) and gas-phase
modifiers (N,, N,+MeOH, N,+MeCN and N,+Ac) on the conformational states of three GHRH analogs, GHRH (1-29), MR-
406 and MIA-602 is described as a function of the trapping time (100 - 500 ms). Changes in the mobility profiles were
observed showing the dependence of the conformational states of GHRH analogs according to the molecular micro-
environment in solution, suggesting the presence of solution memory effects on the gas-phase observed structures.
Modifying the bath gas composition resulted in smaller mobilities that are correlated with the size and mass of the organic
modifier, and more importantly led to substantial changes in relative abundances of the IMS profiles. We attributed the
observed changes in the mobility profiles by a clustering/de-clustering mechanism between the GHRH analog ions and the
gas modifiers, re-defining the free energy landscape and leading to other local minima structures. Moreover, inspection of
the mobility profiles as a function of the trapping time (100 to 500 ms) allowed for conformational inter-conversions toward
more stable “gas-phase” structures. These experiments enabled us to outline a more detailed description of the structures
and intermediates involved in the biological activity of GHRH, MR-406 and MIA-602.

ion mobility cell. Previous IMS-MS studies showed the
utility of this approach to improve, in some cases, the
separation between isomers.* * 7 This approach can be
well-addressed using trapped ion mobility spectrometry

1. INTRODUCTION

Ion mobility spectrometry — mass spectrometry (IMS-
MS) has demonstrated significant advances for the

investigation of the conformational states that adopt
biomolecules by varying the molecular micro-
environment, including biologically-relevant
conditions."> Some IMS-MS studies purposely modify the
starting solvent composition (e.g. organic content, pH,
temperature...) as a tentative to reach a large range of
intracellular conditions and structural diversity." * This
approach provides additional insights into both stable
and intermediate structures and allows to differentiate
the solution structures retain in the gas-phase, known as
memory effect, from the gas-phase structures.” " The
same approach can be used in the gas-phase by changing
the bath gas composition (e.g. N,, N,O, CO,...)>™ or
introducing bath gas modifiers (shift reagents)’>7 in the

(TIMS)® 9, which allows trapping ions in the gas-phase
and exposing them to the bath gas modifiers at different
trapping times (100-500 ms). Recent TIMS studies from
our group showed the potential of bath gas modifiers to
tailor the molecular environment of intrinsically
disordered peptides (e.g., ATHP 3) and small proteins
(e.g., heme proteins).>>

Relevant to the agonistic or antagonistic growth
hormone - releasing hormone (GHRH) potencies, we
recently proposed a high-throughput screening workflow
based on structural motif descriptors using TIMS-MS for
the elucidation of agonistic or antagonistic growth
hormone - releasing hormone (GHRH) potencies.*
Briefly, GHRH is a hypothalamic neuropeptide
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Table 1. Amino acid sequence of GHRH (1-29)-NH,, MR-406 and MIA-602.
Position of amino-acid residues
Peptides
o 1 2 6 8 9 10 12 15 20 21 27 28 29 30
GHRH H Tyr Ala Phe Asn Ser Tyr Lys Gly Arg Lys Met Ser Arg NH,
N- NH-
MR-406 H Me- Ala Phe GIn Ser Tyr Om Abu Arg Ormn Nle Asp Arg Me
Tyr
PhAc- D- N D-
MIA-602 Ada Tyr Arg Fpa; Ala Har Me- Ormn Abu His Orn Nle Arg Har NH,

Tyr

Non-coded amino-acid residues and acyl groups used in the synthesis of the GHRH analogs are abbreviated as follows: Abu: a-
aminobutyric acid; Ada: 12-aminododecanoic acid; Fpas: pentafluoro-phenylalanine; Har: homoarginine; Nle: norleucine; Orn:

ornithine; PhAc: phenylacetyl.

comprising 44 residue (Figure Sia), where the activity
resides in the N-terminal 1-29 residues (highlighted in
green), that stimulates the growth hormone secretion
and release by binding to the GHRH receptor in the
anterior pituitary gland.** Previous reports demonstrated
the importance to synthesize GHRH agonists and
antagonists due to their multiple therapeutic
properties.®2® TIMS profiles exhibited different response
to the solution molecular environment (native (10 mM
ammonium acetate) vs. denaturing (50% methanol)
conditions), inducing conformational changes reflected
by the differences observed in the number and relative
abundance of the IMS bands.>* This clearly indicates a
direct dependence on the molecular micro-environment
in solution (i.e., starting solvent composition).

For a better description of the micro-environment
effect on the conformational space of GHRH analogs, in
the present work, we investigated the conformational
states of GHRH (1-29), MR-406 (GHRH agonist, Figure
Sib) and MIA-602 (GHRH antagonist, Figure Sic) (Table
1) as a function of the starting solvent methanol (MeOH),
acetonitrile (MeCN) and acetone (Ac) composition as
well as by introducing gas modifiers (e.g., MeOH, MeCN
and Ac) in the bath gas of the TIMS analyzer (N,). In the
following discussion, a special emphasis is placed on the
TIMS capability to follow the conformational states of
GHRH analogs as a function of molecular micro-
environment and trapping time (100-500 ms), providing
additional insights on the structures and intermediates
responsible for a given agonist or antagonist function.

2. EXPERIMENTAL SECTION

4.1. Materials and Reagents. GHRH (1-29) was
purchased from Sigma Aldrich (St. Louis, MO). The
GHRH agonist MR-406 and GHRH antagonist MIA-602
were provided by A.V. Schally group. 3 Briefly, GHRH

analogs were obtained using solid-phase method and
purified by reversed-phase HPLC as previously
reported.?®3' MeOH, MeCN, Ac and ammonium acetate
(NH,Ac) were purchased from Fisher Scientific
(Pittsburgh, PA). GHRH analogs were dissolved to 5 pM
in 10 mM aqueous NH,Ac for native conditions, and in
50:50 (v/v) H,O/MeOH, H,O0/MeCN and H,O/Ac for
denaturing conditions. Low-concentration Tuning Mix
(G1969-85000) was used to calibrate the instrument and
obtained from Agilent Technologies (Santa Clara, CA).

4.2. TIMS-MS Experiments. A custom built
nanoESI-TIMS coupled to an Impact Q-TOF mass
spectrometer (Bruker, Billerica, MA, Figure S2) was
employed to perform the ion mobility experiments.® A
custom software in LabView (National Instruments) was
used to control the TIMS unit and synchronized with the
MS platform controls.” Briefly, TIMS is based on holding
the ions stationary using an electric field (E) against a
moving buffer gas.'® In TIMS operation, a radio frequency
(rf) voltage is applied to the electrodes of the TIMS
analyzer to generate a radially confining pseudopotential
and an axial electric field gradient is produced across the
electrodes to counteract the drag force exerted by the gas
flow to trap the ions in the TIMS analyzer. lons are eluted
from the TIMS analyzer region by decreasing the axial
electric field (Figure S2). TIMS separation depends on the
gas flow velocity (vy), elution voltage (Veption), ramp time
(tramp) and base voltage (Vou).® * The reduced mobility,
K,, is defined by:

— Yo~ A
Ko = ?:(Velution_ Vout) (1)
The constant A was determined using known reduced
mobilities of Tuning Mix component.3* Solvents were
introduced in peptide solutions prior to TIMS-MS
analysis. Peptide sample solutions were loaded in a

pulled-tip capillary and directly infused into the MS inlet
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and sprayed at 700-1200 V. Gas-phase modifiers were
added to the TIMS cell by nebulization (Figure S2) at
atmospheric pressure using a second inlet at 650 mL/min
(Analyt-MTC, Millheim, Germany) defined by the
system geometry impedance. TIMS-MS experiments were
performed using nitrogen (N,) as well as N,+MeOH,
N,+MeCN and N,+Ac at room temperature. The gas
velocity was kept constant between the funnel entrance
(P1 = 2.6 mbar) and exit (P2 = 11 mbar, Figure S2)
regardless of the bath gas composition. An rf voltage of
250 Vp,, at 880 kHz was applied to all electrodes. TIMS
experiments were performed using a voltage ramp (Vigmp)
of -280 to o V and base voltage (Vour) of 60 V. TIMS
spectra were collected for t;qmp = 100 - 500 ms. It should
be noted that all solution molecular micro-environment
studies were performed with N, as the bath gas, and that
all gas-phase molecular micro-environment were
conducted using 10 mM aqueous NH4AC starting solvent
composition.

3. RESULTS AND DISCUSSION

The high mobility resolution and trapping nature of
TIMS-MS has permitted the study of kinetically trapped
intermediates of biomolecules in their native and non-
native states providing the distribution of
conformational states and their dependence on the
molecular micro-environment.335 The composition of
the starting solvent3® 37 and bath gas* * conditions can
induce conformational changes reflected in the charge
state distribution as well as in the number of mobility
bands. The mass spectrometry analysis of the
investigated GHRH analogs in native conditions resulted
in a charge state distribution of [M+3H]3* to [M+4H]** for
GHRH (1-29) (Figure 1a, yellow panel) and MR-406
(Figure 2a, yellow panel) and [M+3H]?* to [M+6H]%" for
MIA-602 (Figure 3a, yellow panel). Main changes in the
charge state distribution arise from differences in the
number of basic residues present in the sequence of
GHRH analogs. In fact, GHRH (1-29) and MR-406 have
five basic residues (position 11, 12, 20, 21 and 29, Figures
S1a and Sib) while MIA-602 has eight basic residues
(position 2, 9, 11, 12, 20, 21, 28 and 29, Figure Sic). The
charge state distribution of the investigated GHRH
analogs exhibited a dependence on the solution
molecular micro-environment (i.e., starting solvent
composition, Figure 1a-3a, red panel). As a general trend,
an increase in the relative abundance of the higher charge
states was observed when incorporating organic content
in the starting solvent composition due to molecular
rearrangements causing the exposure of basic residues.
For example, an increase in the relative abundance of the
[M+5H]5* and [M+6H]%* species was observed for MIA-
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Figure 1. Mass (a) and ion mobility (b) spectra of GHRH (1-
29) as a function of the starting solvent composition (yellow
and red panels) and bath gas composition (blue panel). The
[M+3H]3*, [M+4H]4* and [M+5H]5* species are represented
by black, magenta and green traces, respectively. Note that
within each charge state, increasing 1/K, leads to higher
collision cross sections (CCS). Moreover, CCS increases with
the charge state.
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602 upon the addition of organic matter in the starting
solvent composition (Figure 3a, red panel). In addition,
the presence of organic content in the starting solvent
composition showed a conformational change in the
GHRH (1-29) (Figure 1a, red panel) and MR-406 (Figure
2a, red panel) reflected by the presence of an additional
charge state ([M+5H]5*). As expected, changes in the bath
gas composition (neutral molecules) did not affected the
MS distribution, suggesting that the MS profile is just a
reflection of the charge state distribution during native
conditions and charge transfer reactions do not occurred
in the IMS cell (Figure 1a-3a, blue panel).

The ion mobility analysis of the GHRH analogs
resulted in multiple conformational states (i.e., IMS
bands) for most of the charge states in native conditions
(Figure 1b-3b, yellow panel). The large diversity of IMS
bands, especially for the lower charge states, could be
explained by the presence of conformers resulting from
the flexibility of the GHRH analogs and/or the presence
of numerous basic residues that involves a competition
for the protonation site. Under native solvent conditions
(i.e., 10 mM NH,Ac), GHRH (1-29) and MR-406 exhibited
six (A-F, Figure 1b, yellow panel) and seven (a-g, Figure
2b, yellow panel) conformers for the [M+3H]?* species
(black traces), respectively, while a unique IMS band was
obtained for the [M+4H]*" species of GHRH (1-29) (G)
and MR-406 (h) (magenta traces). For MIA-602, TIMS-
MS experiments identified six (1-6, Figure 3b, yellow
panel) conformers for the [M+3H]?* species (black trace),
four (7-10) for the [M+4H]** species (magenta traces), one
(u) for the [M+5H]5* species (green traces) and three (12-
14) IMS bands for the [M+6H]%* species (purple traces).

The number of mobility bands were conserved across
the different organic solvent compositions (Figure 1b-3b,
red panel); however, significant changes in the relative
abundance of the conformational states of GHRH analogs
were observed according to the organic solvent
composition. For example, a decrease in the relative
abundance of the most compact structures of the
[M+3H]3* species (black traces) of GHRH (1-29) (IMS
bands A and B, Figure 1b, red panel) and MR-406 (IMS
bands a-c, Figure 2b, red panel) was observed in the
presence of methanol combined with an increase of the
most extended conformer of the [M+3H]3* species for
GHRH (1-29) (IMS band F) and MR-406 (IMS band g).
For MIA-602, this feature was less pronounced but a
slight increase in the relative abundance was observed
for the most compact structure of the [M+6H]% species
(IMS band 12, Figure 3b, red panel, purple traces). In the
presence of acetonitrile, the features observed for the
[M+3H]>* species was less pronounced as compared to
methanol but a substantial increase of the relative
abundance of the IMS band 12 was obtained for MIA-602.
Drastic changes were observed in the presence of acetone
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Figure 2. Mass (a) and ion mobility (b) spectra of MR-406 as
a function of the starting solvent composition (yellow and
red panels) and bath gas composition (blue panel). The
[M+3H]3*, [M+4H]4* and [M+5H]5* species are represented
by black, magenta and green traces, respectively. Note that
within each charge state, increasing 1/K, leads to higher
collision cross sections (CCS). Moreover, CCS increases with
the charge state.
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2
3 especially for MIA-602 as reflected by the TIMS profiles
4 of the [M+3H]>* and [M+4H]*" species (Figure 3b, red
5 panel, black and magenta traces). Changes in the TIMS
6 profiles showed the dependence of the conformational
7 states of GHRH analogs according to the molecular
8 environment in solution, suggesting the presence of
9 memory effects from the solution structures retain in the
10 gas-phase. The changes in the conformational states can
11 be explained by different type of intermolecular
12 interactions (e.g., salt bridges and hydrogen bonds) with
13 a specific functional group. For example, the carbonyl
14 group of acetone can form additional hydrogen bonds
15 with the amide group of the peptide, reflected by more
16 compact structures in the TIMS profiles as compared to
17 methanol or acetonitrile that probably disrupt some of
18 the hydrogen bonds as reflected by an increase in the
19 relative abundance of the most extended structures.
20 Another explanation could be for the GHRH analogs to
21 adopt different charge solvation schemes according to
2 the molecular environment, possibly including salt
23 bridges. These suggestion are in good agreement with
24 previous observations of structural rearrangements.” > ™
;2 The ion mobility analysis of the GHRH analogs
57 exhibited significant changes in the TIMS profiles with
28 the bath gas composition when compared to the solution
29 studies (Figure 1b-3b, blue panel). The use of gas
30 modifiers resulted in mobility shifts toward smaller
31 mobilities across the GHRH analogs that are correlated
32 with the size and mass of the organic modifiers, methanol
(32 Da), acetonitrile (41 Da) and acetone (58 Da). In fact,
33 methanol as a gas modifier causes the smallest increase
34 in 1/K, while acetone induces the largest increase (Figure
35 1b-3b, blue panel). Despite of the changes in 1/K,, most of
36 the mobility bands were found conserved for all the
37 charge states across the different bath gas compositions
38 (Figure 1b-3b, blue panel). However, changes in the
39 relative abundance of the IMS bands of GHRH analogs
40 were observed with the bath gas composition, different
41 from the previous trend observed with the solution
42 composition. For example, a significant decrease in the
43 relative abundance of the most extended structure of the
44 [M+3H]?* species (black traces) of GHRH (1-29) (IMS
45 band F, Figure 1b, blue panel), MR-406 (IMS band g,
46 Figure 2b, blue panel) and MIA-602 (IMS band 6, Figure
47 3b, blue panel) was observed in the presence of methanol
48 gas modifier combined with an increase of the most
49 compact conformers for the [M+3H]3* species of GHRH
50 (1-29) (IMS bands A and B), MR-406 (IMS bands a-c) and
51 MIA-602 (IMS bands 1-5). The same feature was observed
52 for the [M+4H]* (magenta traces) and [M+6H]%* (purple
53 traces) species of MIA-602 (Figure 3b). Similar trends
54 were also observed for GHRH (1-29) (Figure 1b, blue
55 panel) and MIA-602 (Figure 3b, blue panel) in the
56
57
58
59
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Figure 3. Mass (a) and ion mobility (b) spectra of MIA-602
as a function of the starting solvent composition (yellow and
red panels) and bath gas composition (blue panel). The
[M4+3H]3*, [M+4H]#, [M+5H]5* and [M+6H]°* species are
represented by black, magenta, green and purple traces,
respectively. Note that within each charge state, increasing
1/K, leads to higher collision cross sections (CCS). Moreover,
CCS increases with the charge state.
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presence of acetonitrile or acetone in the TIMS cell. The
presence of acetonitrile or acetone in the TIMS cell had
different effects on the conformational structures of MR-
406 (Figure 2b, blue panel), where an increase in the
relative abundance of the most compact (IMS bands a-c)
and extended (IMS band g) structures for the [M+3H]3*
species (black trace) is observed combined with a
substantial decrease of the IMS band d that was not
obtained in methanol as gas modifier. Moreover, an
additional IMS band was observed in the case of the
[M+3H]3* species (black traces) of GHRH (1-29) (IMS
band X, Figure 1b, blue panel) and MR-406 (IMS band vy,
Figure 2b, blue panel). These IMS bands can be
interpreted by the effect of the gas modifier on the
peptide environment that shift the IMS bands X and y for
which it was not separated with the native conditions and
probably overlaid with another IMS band.

In general, TIMS profiles showed a dependence of the
conformational states of GHRH analogs with the
molecular micro-environment in the gas-phase different
from those induced in solution. The changes in the
conformational states of GHRH analogs in the presence
of gas-phase modifiers can be driven by a clustering/de-
clustering mechanism between the peptides and the gas
modifier, while trapped in the TIMS cell as previously
described.” This involves different type of intermolecular
interactions as observed in solution, including ion-dipole
and/or dipole-dipole interactions between the gas
modifier and the basic and/or polar residues thus allows
a change in the energy landscape favoring a new
equilibrium across conformers. The dipole moments of
the investigated gas modifiers have similar (MeOH) or
higher (MeCN and Ac) values than that of water favoring
clustering in the gas-phase and are consistent with the
different TIMS profiles obtained using methanol as
compared to acetonitrile or acetone gas modifier (Figure
1b-3b, blue panel).

The ion mobility analysis of the GHRH analogs also
exhibited changes in the TIMS profiles as a function of
the trapping time inducing structural rearrangements
toward the more stable and energetically favoured
structures (Figures 4 and S3-S6). It should be noted that
the kinetic experiments are only presented for the
[M+3H]3* (Figure 4) species of the GHRH analogs as well
as the [M+4H]+ (Figure 4) and [M+6H]%" (Figure S6)
species of MIA-602, for which multiple IMS bands are
observed through all the solvent and gas modifier
conditions. A common trend was observed for the
[M+3H]?* species of GHRH (1-29) when varying the
solvent composition, where the relative abundance of the
most intense conformer (IMS band D, Figure 4,
yellow/red panels, magenta traces) is increasing with the
trapping time while the other IMS bands were slightly
decreased or constant, involving that the IMS band D is

the most stable structure in the gas-phase. The same
trend was also obtained in the presence of methanol in
the TIMS cell. However, when introducing acetonitrile
and acetone in the TIMS cell, which have significantly
higher dipole moment as compared to methanol and
water, a decrease in the relative abundance of the IMS
band D and the most extended structures (IMS bands C,
E and F) is obtained combined with an increase of the
most compact structures (IMS bands X, A and B) that
become the most energetically favored conformers
(Figure 4, blue panel). In fact, MeCN and Ac have the
potential to form stronger ionic interactions with the
amino acid residues than water or MeOH due to higher
polarity. Then the observed differences in TIMS profiles
of GHRH (1-29) toward more compact structures upon
exposition to MeCN and Ac could be originated by the
presence of additional inter- and/or intramolecular
interactions, which are more pronounced by increasing
exposition (trapping time) to MeCN and Ac, that allow
for changes in the energy landscape of the peptide
favoring a new equilibrium across conformers.

In the case of the [M+3H]3* species of MR-406, a
common trend was observed between native and
methanol and acetonitrile solvent composition, where
the relative abundance of the two most intense
conformer (IMS bands d and g, Figure 4, yellow/red
panels, magenta/purple traces) is increasing with the
trapping time with a more pronounced effect for the IMS
band g which is the most stable gas-phase structure in
native, methanol and acetonitrile solution. However, a
conformational interconversion was observed between
the IMS bands d and g in the presence of acetone solution
involving that the IMS band d is the most stable gas-
phase structure in acetone solution. In the presence of
methanol in the TIMS cell, an increase in the relative
abundance of the IMS band d was observed combined
with a decrease of a more compact structure (IMS band
b). In addition, as observed in the case of GHRH (1-29)
when introducing acetonitrile and acetone in the TIMS
cell, a significant decrease in the relative abundance of
the most extended structures (IMS bands d, f and g) is
obtained combined with an increase of the most compact
structures (IMS bands a-c) that become the most
energetically favored conformers (Figure 4, blue panel).

In the case of the [M+3H]3* species of MIA-602, a
common trend was observed between all the starting
solvent composition, where the relative abundance of the
IMS bands 2 and 5 are increasing with the trapping time
while the IMS bands 1and 6 are decreasing, involving that
the IMS bands 2 and 5 are the most stable structures in
the gas-phase (Figure 4, yellow/red panels). No
conformational changes were observed in the presence of
gas modifiers except for a conformational
interconversion between the IMS bands 2 and 5 (Figure
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4, blue panel). For the [M+4H]** species, the IMS bands 7
and 9 were increoasing through all the starting solvent
composition while the IMS bands 8 and 10 tended to
decrease (yellow/red panels). While the relative
abundance of the IMS band 9 was still increased in the
presence of a bath gas modifier, the IMS band 7 are now
decreasing making the structure of the IMS band 9 the
most stable in the gas-phase. Finally, the [M+6H]%
species showed a conformational interconversion
between the IMS bands 12 and 13, where the most
compact structure (IMS band 12) is the more stable
conformer (Figure S6). The present methodology
implemented additional insights on the intermediates
and the most stables structures that are probably driving
the agonist and antagonist activities of GHRH analogs.

3. CONCLUSIONS

This study showcases the impact of the starting solvent
and bath gas compositions on the conformational states
of three GHRH analogs, ranging from agonist to wild type
to antagonist. The present results revealed that the
number of IMS bands were preserved in both solution
and gas-phase molecular micro-environment, but with a
dependence on the relative abundance. Memory effects
from the solution structures were observed in the gas-
phase structures. The changes in the TIMS profiles
induced by the use of dopants in the gas-phase molecular
micro-environment were different from the changes
observed using solution additives. We interpret these
differences as a clustering and de-clustering mechanisms
between the molecular GHRH analog ions and the
neutral bath gas modifiers, driven by changes in the free
energy landscape and interconversion barriers between
conformers due to higher order ion-neutral interactions
(e.g., ion-dipole and/or dipole-dipole interactions).
Moreover, conformational interconversions were
observed as a function of the trapping time (100-500 ms)
toward the more stable “gas-phase” structures. TIMS
experiments as a function of both solvent and bath gas
composition and trapping time enabled us to outline a
more detailed description of the multiple intermediates
of GHRH analogs and potential links to the agonist and
antagonist activity GHRH (1-29), MR-406 and MIA-602.
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