\[\begin{array}{ccc}
\text{t}_1 & 5.2 & 5.3 \\
3.9 & 5.4 & 3.3 \\
4.4 & 2.0 & 0.7 \\
4.1 & 4.1 & 2.2 \\
5.5 & 3.8 & \\
2.3 & 3.5 & \\
\hline
17.2 & 19.5 & 4.2
\end{array} \]

\[\bar{X} = \frac{17.2 + 19.5 + 4.2}{3} = 13.3 \]

\[\bar{X}_1 = \frac{17.2}{3} = 5.73 \]

\[\bar{X}_2 = \frac{19.5}{3} = 6.5 \]

\[\bar{X}_3 = \frac{4.2}{3} = 1.4 \]

\[F = \frac{MS_T}{MS_E} = 7.56 \]

ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tms</td>
<td>2</td>
<td>12.4203</td>
<td>6.2102</td>
<td>3.39</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>18.3320</td>
<td>1.8332</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>30.7523</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[H_0: \mu_1 = \mu_2 = \mu_3 \]

\[Ha: \text{at least 2 means are different} \]

\[\alpha = 0.01 \]

\[Test \text{ Stat} \ F = \frac{MS_T}{MS_E} = 7.56 \]

\[F_{0.01(2,10)} = 7.56 \]
Rejection Region: $F > 7.56$

Conclusion: Since sample value of F is 3.39 which is not greater than 7.56, we do not reject H_0.

There is not sufficient evidence to conclude that at least two of the three means are different.