The Mean Value Theorem

MAC 2311

Florida International University

When evaluating limits, we saw that **indeterminate forms** can be evaluated using the following result. **Theorem** (L'Hôpital's Rule). Let $f'(x)$ and $g'(x)$ be continuous at $x = a$, $f(a) = g(a) = 0$, and $g'(a) \neq 0$. If

$$
\lim_{x \to a} \frac{f(x)}{g(x)}
$$

has the property that either

$$
\frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} \to \frac{0}{0} \quad \text{or} \quad \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} \to \frac{\pm \infty}{\pm \infty}
$$

then

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
$$

This works because we assume $g'(a) \neq 0$. If we want to do it in worse cases, we need a new tool called the Mean Value Theorem to make sure that our functions and their derivatives don't change (remember - derivatives measure change) unpredictably.

We can state the problem in a different context, namely when we try to predict the behavior of a function using its derivative. The main result we would like to pin down is

Theorem. If $f'(x) > 0$ for all values x in an interval (a, b) , then f is increasing on that interval.

In other words, for any p and q in (a, b) with $p < q$, $f(p) < f(q)$, and this theorem means we can tell that is happening just by looking at the sign of the derivative.

If for some p in (a, b) , $0 < f'(p)$. Then

$$
0 < f'(p) \implies f'(p)(x - p) = f(x) - f(p) = \frac{f(x) - f(p)}{x - p} \implies 0 < f(x) - f(p)
$$

This would mean that if $x > p$, we'd get that $f(x) > f(p)$, but how do we know that this works for any x we choose? Do we need to do this infinitely many times for all the values between p and b ? No, but we need a strategy.

To see how to do this, let's start with a warm-up case. This is called Rolle's Theorem.

Theorem (Rolle's Theorem). Suppose that $f(x)$ is continuous on an interval [a, b], differentiable on (a, b) and $f(a) = f(b)$. Then, there is at least one point c in (a, b) where $f'(c) = 0$. That is, there is at least one interior point c in the domain of f such that the graph of $f(x)$ has a horizontal tangent line.

Proof. We first have to show that $f(x)$ has a maximum or minumum somewhere between a and b. The Extreme Value Theorem gives us that. Then either f is zero everywhere, or there is some point where $f(x) \neq 0$, say $x = c$. By the EVT, $f'(c) = 0$. \Box

Graphically, Rolle's Theorem is presented below.

The Mean Value Theorem is a little less obvious, but it is a generalization of Rolle's Theorem.

Theorem (Mean Value Theorem). Suppose that $f(x)$ is continuous on the closed interval [a, b] and differentiable on the open interior interval (a, b) . Then, there is at least one point c in (a, b) such that

$$
f'(c) = \frac{(f(b) - f(a))}{(b - a)}
$$

In other words, there is a tangent line at some number $x = c$ between a and b that has the same slope as the secant line between the points $(a, f(a))$ and $(b, f(b))$.

Proof. Define a new function $q(x)$ using the given function so that $q(a) = q(b) = 0$, then apply Rolle's theorem. \Box

Graphically, the Mean Value Theorem is presented below.

For our purposes, the most important aspects of the Mean Value Theorem are its consequences:

• If the derivative of a function is zero, then the function must be a constant.

We've often assumed this is true, because we already learned about the reverse of this statement: the derivative of any constant is zero. Try to prove this yourself using MVT.

• If f is continuous, differentiable, and has a positive derivative, then f is an increasing function. If f has a negative derivative, then it is a decreasing function.

We can now prove this conclusively. Use the existence of a value c in the interval (a, b) to show that the positive (or negative) derivative at that point forces the function to increase from $x = p$ to $x = q$ (or any pair of values in (a, b) .

• If two functions have the same derivative (i.e., $f'(x) = g'(x)$), then $f(x)$ and $g(x)$ must only differ by a constant: $f(x) = g(x) + C$.

This is new and important for other reasons.

Example 1: For $f(x) = 3x^2 + 2x + 5$ on [-1, 1], determine whether MVT applies. If so, find the points that are guaranteed to exist by MVT.