
MAP 2302 Techniques for first-order DEs Week 2

Separable differential equations

These are a special type of first-order differential equation.

If we have an equation of the form
y′ = f(x, y),

then it might be the case that f is a function of x times a function of y. If so, then we can
‘separate’ the variables and rewrite in the form

h(y)
dy

dx
= g(x)

and then ‘separate’ the variables

h(y) dy = g(x) dx

and then integrate each side individually.

WEEK 2 EXAMPLE 1: Solve the differential equation.

y′ = x2y
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WEEK 2 EXAMPLE 2: Solve the differential equation.

y′ =
x

y2
√
1 + x

by Idris Mercer, Florida International University Page 2 of 10



MAP 2302 Techniques for first-order DEs Week 2

Remember, a differential equation can have infinitely many solutions.

But an initial value problem will (usually) have a unique solution.

WEEK 2 EXAMPLE 3: Solve the initial value problem.

dy

dx
= (1 + y2) tanx, y(0) =

√
3
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First-order linear equations

A first-order linear differential equation can be written in ‘standard form’

y′ + P (x)y = Q(x)

How can we find a general technique for solving this?

Key: The left side resembles the result of performing the product rule.

Maybe we can multiply both sides by some function µ(x)

µ(x)y′ + µ(x)P (x)y = µ(x)Q(x)

and have the left side be exactly the result of the product rule.

This would work if we have µ(x)P (x) = µ′(x).

Equivalently, we want

P (x) =
1

µ(x)
µ′(x).

The right-hand side is the derivative of ln
(
µ(x)

)
.

So we have the following steps:

P (x) =
1

µ(x)
µ′(x)

P (x) =
d

dx

(
ln
(
µ(x)

))
∫

P (x) dx = ln
(
µ(x)

)
e
∫
P (x)dx = µ(x)

CONCLUSION: If you have a first-order linear differential equation

y′ + P (x)y = Q(x)

and you multiply both sides by the ‘integrating factor’

µ(x) = e
∫
P (x) dx

then you’ll get an equation of the form

µ(x)y′ + µ′(x)y = µ(x)Q(x)

which we can then (probably? maybe?) solve.
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WEEK 2 EXAMPLE 4: Find the general solution to the differential equation.

y′ − y − e3x = 0
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We can also have an initial value problem involving a first-order linear equation.

WEEK 2 EXAMPLE 5: Solve the initial value problem.

y′ + 4y − e−x = 0, y(0) =
4

3
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Exact differential equations

We saw that when solving separable differential equations, we sometimes treat dy and dx as
separate entities.

This is not always 100% mathematically rigorous, but can still be useful in practice and is
often done in physics.

Informal idea: x changes by a small amount dx, and y changes by a small amount dy.

Remember that an equation of the form F (x, y) = C can define a curve.

It also gives an implicit relationship between x and y.

One example: x2 + y2 = 4 (circle with radius 2)

Another example: x2 + xy + y2 = 3 (more complicated curve)

In Calculus I, you learn to apply implicit differentiation to equations like these.
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In the first example on the previous page, if you take
d

dx
of both sides, you get

d

dx

(
x2 + y2

)
=

d

dx

(
4
)

2x+ 2y · y′ = 0

or 2x+ 2y · dy
dx

= 0

This could also be written 2x dx+ 2y dy = 0.

Notice we would get exactly the same result if the 4 on the right side was a different constant.

This means that if we’re given the differential equation 2x dx+ 2y dy = 0, a one-parameter
family of solutions is x2 + y2 = C.

In the second example, we would get

d

dx

(
x2 + xy + y2

)
=

d

dx

(
3
)

(x2)′ + (x)′y + x(y)′ + (y2)′ = (3)′

2x+ 1 · y + x · dy
dx

+ 2y · dy
dx

= 0

or 2x dx+ y dx+ x dy + 2y dy = 0

This could also be written (2x+ y)dx+ (x+ 2y)dy = 0.

So, if we’re given the differential equation (2x + y)dx + (x + 2y)dy = 0, a one-parameter
family of solutions is x2+xy+ y2 = C. (Again, note that the 3 on the right-hand side could
have been any constant.)
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Notice that if F (x, y) = x2 + xy + y2, then

∂

∂x

(
x2 + xy + y2

)
= 2x+ y

∂

∂y

(
x2 + xy + y2

)
= x+ 2y

so the differential equation (2x+ y)dx+ (x+ 2y)dy = 0 has the form

∂F

∂x
dx+

∂F

∂y
dy = 0.

In general, if we have a differential equation of the form

M(x, y)dx+N(x, y)dy = 0 (1)

and there exists a function F (x, y) with the property that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y)

then the differential equation (1) is called exact, and a one-parameter family of solutions to
the differential equation is

F (x, y) = C.
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How do we tell whether a differential equation is exact?

FACT: If
∂M

∂y
=

∂N

∂x
, then equation (1) is exact.

Why? Because ∂M
∂y

would be ∂
∂y

(
∂F
∂x

)
and ∂N

∂x
would be ∂

∂x

(
∂F
∂y

)
.

WEEK 2 EXAMPLE 6: Solve the differential equation.

(2x+ y) dx+ (x− 2y) dy = 0
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