Auxiliary equations with complex roots

If we're given the differential equation $ay'' + by' + cy = 0$, then its 'auxiliary equation' is

$$
ar^2 + br + c = 0
$$

What happens if the auxiliary equation has complex roots?

Key idea: There will *still* be solutions of the form e^{rt} even when r is a complex number!

WEEK 5 EXAMPLE 1: Find two independent solutions to the differential equation.

$$
y'' - 6y' + 10y = 0
$$

The auxiliary equation for Example 1 is

$$
r^2 - 6r + 10 = 0
$$

We can solve this with the quadratic formula or by completing the square.

The solutions to $r^2 - 6r + 10 = 0$ are $r = 3 + i$ and $r = 3 - i$.

So in fact, two solutions for Example 4 will be

$$
y = e^{(3+i)t} \qquad \text{and} \qquad y = e^{(3-i)t}
$$

How do we get solutions that don't involve complex numbers?

Fact: $e^{(\alpha+i\beta)t} = e^{\alpha t}e^{i\beta t}$ just using rules of exponents.

More subtle fact:

$$
e^{i\beta t} = \cos(\beta t) + i\sin(\beta t)
$$

(The fact $e^{ix} = \cos x + i \sin x$ is sometimes called Euler's formula and can be shown by plugging into the power series for e^x .)

So the functions $e^{(\alpha+i\beta)t}$ and $e^{(\alpha-i\beta)t}$ can be rewritten in the following way:

$$
e^{(\alpha+i\beta)t} = e^{\alpha t}e^{i\beta t} = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))
$$

$$
e^{(\alpha-i\beta)t} = e^{\alpha t}e^{-i\beta t} = e^{\alpha t}(\cos(\beta t) - i\sin(\beta t))
$$

SUMMARY: If $\alpha \pm i\beta$ is a pair of complex solutions of the auxiliary equation, then two independent solutions of the differential equation are

> $e^{\alpha t} \cos(\beta t)$ and e $e^{\alpha t} \sin(\beta t)$

Example 1 revisited

Differential equation was $y'' - 6y' + 10y = 0$

Auxiliary equation was $r^2 - 6r + 10 = 0$

Roots of auxiliary equation are $r = 3 \pm 1i$ (so $\alpha = 3$ and $\beta = 1$)

Two independent solutions of the differential equation are

$$
y_1 = e^{3t} \cos t
$$
 and $y_2 = e^{3t} \sin t$

so the general solution is $y = c_1 e^{3t} \cos t + c_2 e^{3t} \sin t$.

WEEK 5 EXAMPLE 2: Find the general solution of the differential equation.

 $y'' + 10y' + 41y = 0$

WEEK 5 EXAMPLE 3: Solve the initial value problem.

$$
y'' - 2y' + 2y = 0, \t y(\pi) = e^{\pi}, \t y'(\pi) = 0
$$

Nonhomogeneous equations

So far, we have learned techniques for solving *homogeneous* linear differential equations with constant coefficients.

Here, 'homogeneous' means that the right-hand side is 0. For example:

$$
y'' - 10y' + 26y = 0
$$

$$
2y'' + 13y' - 7y = 0
$$

$$
y''' - 4y'' + 7y' - 6y = 0
$$

What do we do if the right-hand side is not 0? For example:

$$
y'' - 2y' - 3y = 9t
$$

How might we find a solution of this differential equation?

In essence, we *guess* the form of a solution! In this case, maybe another linear function of t .

We can try $y = At + B$ where A and B are unknown constants. Then:

$$
y = At + B
$$

$$
y' = A
$$

$$
y'' = 0
$$

We can then plug these into the nonhomogeneous equation that we're trying to solve.

After some algebra, we find that a particular solution of the nonhomogeneous differential equation

$$
y'' - 2y' - 3y = 9t
$$

is given by $y = -3t + 2$.

What about a different nonhomogeneous equation? For example:

$$
y'' - 2y' - 3y = 10e^{4t}
$$

Can we 'guess' a solution with undetermined coefficients?

If we try $y = Ae^{4t}$, then we have

$$
y = Ae^{4t}
$$

$$
y' = 4Ae^{4t}
$$

$$
y'' = 16Ae^{4t}
$$

Plug those into the nonhomogeneous equation we're trying to solve.

What about yet another nonhomogeneous equation? For example:

$$
y'' - 2y' - 3y = -10\sin t
$$

What form of particular solution should we guess?

Yet another nonhomogeneous differential equation:

$$
y''-2y'-3y=8e^{3t}
$$

What form of particular solution should we guess?

If we guess $y = Ae^{3t}$ and write down y' and y'', what happens?

If this doesn't work as a solution to the nonhomogeneous equation, how might we modify our guess?

The last differential equation on the previous page was

$$
y'' - 2y' - 3y = 8e^{3t}
$$

Since $y = e^{3t}$ is a solution to the corresponding homogeneous equation $y'' - 2y' - 3y = 0$, this means that $y = Ae^{3t}$ won't solve the nonhomogeneous equation.

But if we modify our guess to $y = Ate^{3t}$, it will turn out to work.

A more complicated example:

$$
y'' - 10y' + 25y = te^{5t}
$$

Here, $r = 5$ is a *double* root of the auxiliary equation $r^2 - 10r + 25 = 0$, so it turns out that we need to try a particular solution of the form

$$
y = (At^3 + Bt^2 + Ct + D)e^{5t}
$$

More nonhomogeneous equations, and what to try as particular solutions:

If given $y'' + 3y = -9$, we try $y = A$

If given $y'' + y = e^t$, we try $y = Ae^t$

If given $2y' + y = 3t^2$, we try $y = At^2 + Bt + C$

If given $y'' - y' + 9y = 3 \sin 3t$, we try $y = A \sin 3t + B \cos 3t$

If given $y'' - 5y' + 6y = xe^x$, we try $y = (Ax + B)e^x$