		Diff., Prod., & Quot. Rules;		
MAC 2311	Learning Activity $\#6$	Derivatives of Trig. Functions		
Name:		Group #:		

1. Prove the derivative of $f(x) = \tan x$ by using derivative rules.

Use derivative rules to find the derivatives of the following functions. Simplify by combining like terms and canceling common factors.

2. $f(t) = (5+t^5)\left(\frac{5}{\sqrt[5]{t}}+5t\right)$

3.
$$r(\theta) = \frac{\sec \theta}{1 + \sec \theta}$$

5. Suppose there exists a function, f(x), such that f(1) = 4 and f'(1) = 5. Let $h(x) = \frac{f(x)}{x+1}$. Find the equation of the tangent line to h(x) at x = 1.

6. Find the third derivative of $f(t) = 3t^3 - \frac{2}{t^2}$

7. Find the 42^{nd} and 55^{th} derivative of $f(x) = \sin x$.

8. Use this table to find the following:

x	2	3	4	5
f(x)	2	3	4	3
g(x)	7	3	-1	2
f'(x)	5	7	-1	-2
g'(x)	3	-2	1	8

(a) $\left. \frac{d}{dx} \left[-2f(x) \right] \right|_{x=4}$

(b)
$$\left. \frac{d}{dx} \left[x^2 f(x) \right] \right|_{x=5}$$

(c) Find the equation of the tangent line to $y = \frac{g(x)}{f(x)}$ at x = 3.