Multiple-choice assessments as practical diagnostic tools

Darryl Chamberlain Jr.

Department of Mathematics, University of Florida

FIU Math Ed Seminar, November 13th 2020

Introduction

OUTLINE

Introduction

Development

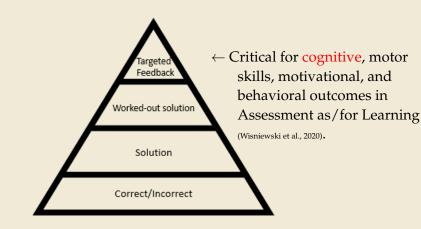
Evidence of Success

Conclusions

COMPETING GOALS OF ASSESSMENTS

	as Learning	s Learning for Learning	
Learn	During	After	Before
Attempts	Single	Multiple	Single
Stakes	None	Low	High
Feedback	During	After	None

(Dann, 2014)


Introduction

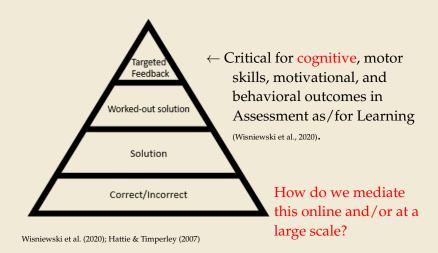
Development

E<mark>vidence of Success</mark> 0000000000 Conclusions

References

TYPES OF FEEDBACK

Wisniewski et al. (2020); Hattie & Timperley (2007)

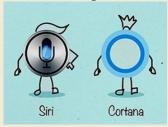

Introduction

Development

E<mark>vidence of Success</mark> 0000000000 Conclusions

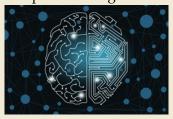
References

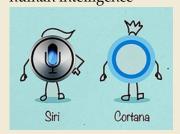
TYPES OF FEEDBACK



Types of Intelligence

Augmented Intelligence Humans imbued with computer intelligence.


Artificial Intelligence Computers imbued with human intelligence



Types of Intelligence

Augmented Intelligence Humans imbued with computer intelligence.

Artificial Intelligence Computers imbued with human intelligence

The goal is to anticipate the types of feedback an instructor would make in-the-moment and automate this feedback.

Conclusion

WHY MULTIPLE-CHOICE?

 Most portable and software-independent type of assessment.

WHY MULTIPLE-CHOICE?

- Most portable and software-independent type of assessment.
- Reduces number of responses to associate to targeted feedback.

WHY MULTIPLE-CHOICE?

- Most portable and software-independent type of assessment.
- Reduces number of responses to associate to targeted feedback.
- Foundation of multiple-choice diagnostic assessments can be utilized for free-response assessments and/or artificial intelligence.

Introduction

OUTLINE

Introduction

Development

Evidence of Success

Conclusions

ANATOMY OF A MULTIPLE-CHOICE QUESTION

[stem] Solve the equation below.

[problem]
$$\frac{-8x+9}{3} - \frac{-6x+9}{5} = \frac{-9x-9}{8}$$

- **A.** [solution] x = 6.805
- **B.** [distractor] x = -0.332
- **C.** [distractor] x = 17.341
- **D.** [distractor] x = 26.341

TYPES OF DISTRACTORS

	Superficial	Errors	Conceptions	
Frequency	Common	Uncommon	Rare	
Cognitive level	None	Procedural	Conceptual	
$2x^2 - x - 3 =$	(2x-3)(x-1)	(2x+3)(x-1)	Unfactorable $(x-6)(x+1)$	
Explains	???	In-the- moment issues	Conceptual issues	

TYPES OF DISTRACTORS

	Superficial	Errors	Conceptions
Frequency	Common	Uncommon	Rare
Cognitive level	None	Procedural	Conceptual
$2x^2 - x - 3 =$	(2x-3)(x-1)	(2x+3)(x-1)	Unfactorable $(x-6)(x+1)$
Explains	???	In-the- moment issues	Conceptual issues

By tracking errors and misconceptions throughout an assessment/semester, students can get a better sense of what they are doing wrong and how to improve.

 Introduction
 Development
 Evidence of Success

 00000
 00000000000
 000000000

Conclusions

References

DEVELOPING "GOOD" DIAGNOSTIC DISTRACTORS

Instructor's math/teaching experience

DEVELOPING "GOOD" DIAGNOSTIC DISTRACTORS

- Instructor's math/teaching experience
- Historical class data

DEVELOPING "GOOD" DIAGNOSTIC DISTRACTORS

- Instructor's math/teaching experience
- Historical class data
- Historical development of concepts

DEVELOPING "GOOD" DIAGNOSTIC DISTRACTORS

- Instructor's math/teaching experience
- Historical class data
- Historical development of concepts
- Research results

BUILDING GENERALIZED QUESTION STRUCTURES: PROPERTY

Choose the **smallest** set of Complex numbers that the number below belongs to.

$$\sqrt{\frac{-560}{5}} + \sqrt{0}i$$

- A. Not a Complex Number
- B. Irrational
- C. * Pure Imaginary
- D. Nonreal Complex
- E. Rational

PROPERTY EXAMPLE - CONTINUED

$$\sqrt{\frac{-560}{5}} + \sqrt{0}i$$

A. Not a Complex Number

This is not a number. The only non-Complex number we know is dividing by 0 as this is not a number!

B. Irrational

These cannot be written as a fraction of Integers. Remember: Square root does not mean irrational!

C. Pure Imaginary

* This is the correct option!

D. Nonreal Complex

This is a Complex number (a + bi) that is not Real (has i as part of the number).

E. Rational

These are numbers that can be written as fraction of Integers (e.g., -2/3 + 5)

BUILDING GENERALIZED QUESTION STRUCTURES: ARITHMETIC

Solve the equation below.

$$\frac{-8x+9}{3} - \frac{-6x+9}{5} = \frac{-9x-9}{8}$$

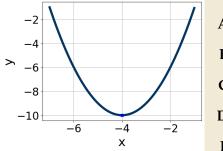
A. * x = 6.805B. x = -0.332C. x = 17.341D. x = 26.341

 Conclusio

References

ARITHMETIC EXAMPLE - CONTINUED

Solve the equation below.


$$\frac{-8x+9}{3} - \frac{-6x+9}{5} = \frac{-9x-9}{8}$$

- **A.** * x = 6.805; correct!
- **B.** x = -0.332; corresponds to dividing the second number in the numerator by the denominator.
- **C.** x = 17.341; corresponds to not distributing the negative in front of the second fraction.
- **D.** x = 26.341; corresponds to dividing the coefficients in front of x by the denominator

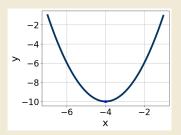
BUILDING GENERALIZED QUESTION STRUCTURES: GRAPHICAL

Choose the correct equation of the graph below. Assume a = 1 or a = -1.

A.
$$*f(x) = x^2 + 8x + 6$$

B. $f(x) = x^2 + 8x + 16$
C. $f(x) = -x^2 - 8x - 26$
D. $f(x) = x^2 + 8x + 12$
E. $f(x) = x^2 - 8x + 6$

Introduction


Development

Evidence of Success

Conclusions

References

GRAPHICAL EXAMPLE - CONTINUED

A. $*f(x) = x^2 + 8x + 6$

This is correct and uses $f(x) = a(x - h)^2 + k$.

B. $f(x) = x^2 + 8x + 16$

This uses $f(x) = a(x - h)^2 + k$ but assumes

k = 0 because it is at the bottom of the graph.

- **C.** $f(x) = -x^2 8x 26$ This uses $f(x) = a(x - h)^2 + k$ but assumes a = -1.
- **D.** $f(x) = x^2 + 8x + 12$

This uses a factored-form approach f(x) = (x + 6)(x + 2) through a visual assumption of the x-axis.

E. $f(x) = x^2 - 8x + 6$

This uses the vertex form as

$$f(x) = a(x+h)^2 + k.$$

BUILDING GENERALIZED QUESTION STRUCTURES: TABULAR

Given $h(x) = (f \circ g)(x)$ and **only** the information in the following table, evaluate f(2), if possible.

x	h(x)	g(x)
2	1	-3
-3	4	1
-2	0	2

- **A.** f(2) = 4
- **B.** *f(2) = 0
- **C.** f(2) = 1
- **D.** It is not possible to evaluate f(2) based only on the information in the table.

Introduction	I
00000	c

 Evidence of Succes

Conclusion

References

TABULAR EXAMPLE - CONTINUED

x	h(x)	g(x)
2	1	-3
-3	4	1
-2	0	2

A. f(2) = 4

Corresponds to evaluating h(g(2)).

B. *f(2) = 0

Corresponds to determining the a such that g(a) = 2, then evaluating h(a).

C. f(2) = 1

Corresponds to determining the a such that h(a) = 2, then evaluating g(a).

D. It is not possible to evaluate f(2) based only on the information in the table.

Corresponds to viewing functions as a single algebraic formula.

INTERVAL MASKING METHOD - ARITHMETIC EXAMPLE

Solve the linear equation below. Then, choose the interval that contains the solution.

$$\frac{-8x+9}{3} - \frac{-6x+9}{5} = \frac{-9x-9}{8}$$

A. $x \in [4.8, 10.8]$ **B.** $x \in [-2.33, 4.67]$ **C.** $x \in [17.34, 23.34]$ **D.** $x \in [23.34, 29.34]$

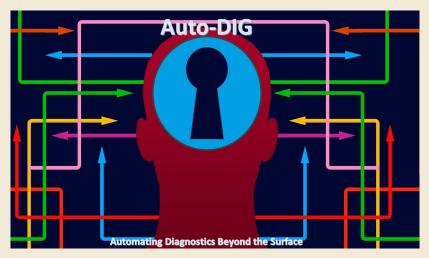
INTERVAL MASKING METHOD - POLYNOMIAL EXAMPLE

Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{3}{2}, -\frac{3}{4}, \frac{1}{2}$$

A. $a \in [10, 20], b \in [3, 7],$ $c \in [-31, -17], \text{ and } d \in [1, 17]$ B. $a \in [10, 20], b \in [23, 30],$ $c \in [-7, 1],$ and $d \in [-12, 1]$ C. $a \in [10, 20], b \in [16, 22],$ $c \in [-17, -6], \text{ and } d \in [-12, 1]$ D. $a \in [10, 20], b \in [-22, -19], c \in [-17, -6], \text{ and } d \in [-12, 1]$ E. $a \in [10, 20], b \in [-22, -19], c \in [-17, -6], \text{ and } d \in [1, 17]$

INTERVAL MASKING METHOD - POLYNOMIAL EXAMPLE CONTINUED


A. $a \in [10, 20], b \in [3, 7], c \in [-31, -17], and d \in [1, 17]$ $16x^3 + 4x^2 - 24x + 9$, which corresponds to multiplying out (2x + 3)(4x - 3)(2x - 1). **B.** $a \in [10, 20], b \in [23, 30], c \in [-7, 1], and d \in [-12, 1]$ $16x^3 + 28x^2 - 9$, which corresponds to multiplying out (2x + 3)(4x + 3)(2x - 1). **C.** $a \in [10, 20], b \in [16, 22], c \in [-17, -6], and d \in [-12, 1]$ $16x^3 + 20x^2 - 12x - 9$, which corresponds to multiplying out (2x + 3)(4x - 3)(2x + 1). **D.** $a \in [10, 20], b \in [-22, -19], c \in [-17, -6], and d \in [-12, 1]$ $16x^3 - 20x^2 - 12x - 9$, which corresponds to multiplying everything correctly except the constant term. **E.** $a \in [10, 20], b \in [-22, -19], c \in [-17, -6], and d \in [1, 17]$ * $16x^3 - 20x^2 - 12x + 9$, which is the correct option.

Conclusion

References

GRAPHICAL USER INTERFACE

OUTLINE

Introduction

Development

Evidence of Success

Conclusions

	velopment Evidence of Success 000000000000000000000000000000000000	Conclusions References						
"Solve Compound Inequality" example								
Fall 2017 Q12	Fall 2018 Q12	Fall 2019 Q4						
[n = 76]	[n = 69]	[n = 70]						
$-1 \le \frac{x+1}{3} \le 3$	$7 + 7x < \frac{50x - 4}{6} \le 8 + 8x$	$-8 + 8x < \frac{36x - 8}{4} \le 7 + 8x$						
A. $[-5, 3]$	A. $(a, b]$, where $a \in [-29, -25]$ and $b \in [-10, -5]$	A. $[a, b)$, where $a \in [-12, -7]$ and $b \in [3, 7]$						
B. [-7, 1]	B. $[a, b)$, where $a \in [-29, -24]$ and $b \in [-10, 2]$	B. $(a, b]$, where $a \in [-10.4, -8.6]$ and $b \in [4.6, 6.4]$						
C. [-1,7]	*C. $(a, b]$, where $a \in [2, 8]$ and $b \in [23, 31]$	*C. $(a, b]$, where $a \in [-8.2, -4.9]$ and $b \in [6.1, 11.2]$						
*D. [-3,5]	D. $[a, b)$, where $a \in [4, 7]$ and $b \in [25, 29]$	D. $[a, b)$, where $a \in [-7, -2]$ and $b \in [8, 11]$						
	E. There is no solution to the inequality.	E. There is no solution to the inequality.						
7%, 1%, 1%, 91%	1%, 3%, 87% , 3%, 6%	0%, 4%, 83%, 10%, 3%						

Introduction 00000	DevelopmentEvidence00000000000000000000000000000000000	e of Success	Conclusions	References
"Solve li	NEAR EQUATION	(RATION	AL)" EXAI	MPLE
Fall 2017 Q9 [<i>n</i> = 76]	Fall 2018 Q9 [n = 69]	Fall 2 ($n = 70$)	019 Q5	
$\frac{x-2}{9} = \frac{x-4}{2}$	$\frac{-4x-6}{2} - \frac{-4x+6}{5} = \frac{3x-3}{4}$	$+\frac{7}{4}$ $-\frac{8x+7}{4}$	$\frac{+7}{5} - \frac{-3x+4}{5} =$	$=\frac{-3x+6}{2}$
A. $\left\{\frac{40}{7}\right\}$	A. $x \in [-1.9, -0.7]$	A. $x \in$	[2, 5]	
$B.\left\{-\frac{32}{11}\right\}$	*B. $x \in [-5.1, -2.1]$	B. $x \in$	[27, 31]	
$C.\left\{\frac{34}{7}\right\}$	C. $x \in [-11.6, -8.8]$	$C. x \in$	[-5,0]	
*D. $\left\{\frac{32}{7}\right\}$	D. $x \in [-3, -1.9]$	*D. <i>x</i> ($\in [18, 25]$	
	E. No Real solutions.	E. No	Real solutions.	
4%, 3%, 3%, 91%	20%, 68% , 3%, 4%, 4%	10%, 3	8%, 17%, 66% , 4%	%

Inti	rodu	acti	on
00)	

"FACTOR THE TRINOMIAL" EXAMPLE

Fall 2017 Q7 $[n = 76]$	Fall 2018 Q6 [n = 69]
Factor $-24x^2 - 20x + 24$	Factor $15x^2 + 62x + 40$ as
	$(ax+b)(cx+d)$, with $b \le d$.
A. $-4(3x+2)(2x-3)$	A. $a \in [-4.1, -2.6], b \in [-15, -3], c \in [-7, -3],$
	and $d \in [-8, -2]$
B. $4(3x+2)(2x-3)$	B. $a \in [0.7, 1.6], b \in [-3, 7], c \in [13, 17],$
	and $d \in [8, 13]$
C4(3x - 2)(2x + 3)	*C. $a \in [4.3, 7.8], b \in [-3, 7], c \in [-3, 6],$
	and $d \in [8, 13]$
D. $4(x+1)(x-2)$	D. $a \in [0.7, 1.6], b \in [9, 13], c \in [13, 17],$
	and $d \in [-1,9]$
	E. $a \in [-4.1, -2.6], b \in [9, 13], c \in [-7, -3],$
	and $d \in [-1, 9]$
13%, 1%, 86%, 0%	0%, 1%, 93% , 6%, 0%

QUANTITATIVE EVIDENCE: ITEMS WITH EFFECTIVE DISTRACTORS

Effective distractors are those that are chosen at least 5% of the time (Hingorjo & Jaleel, 2012).

		Fall :	2017			Fall :	2018			Fall 2	2019	
	Ver A	Ver B	${\rm Ver}\ {\rm C}$	AVG	Ver A	$\mathrm{Ver}\ \mathrm{B}$	$\mathrm{Ver}\ \mathrm{C}$	AVG	Ver A	$\operatorname{Ver} B$	$\mathrm{Ver}\ \mathrm{C}$	AVG
Items w/ 0 EDs	12%	20%		21%					9%	5%	0%	5%
Items w/ 1 EDs	32%	24%	32%	29%	33%		25%		27%	41%	41%	36%
Items w/ 2 EDs	28%	32%	28%	29%	17%	33%	25%	25%	45%	32%	23%	33%
Items w/ 3 EDs	28%	24%	8%	20%	17%	8%	25%	17%	18%	14%	27%	20%
Items w/ 4 EDs	NA	NA	NA	NA	8%	4%	4%	6%	0%	9%	9%	6%

Conclusions

References

QUANTITATIVE EVIDENCE: PERCENT OF DISTRACTORS

Semester	Fall 2017	Fall 2018/2019
# of Questions	25	24
# of Options	4	5
Total Distractors	75	96

	Fall 2017				Fall 2018				Fall 2019			
	Ver A	Ver B	$\mathrm{Ver}\ \mathrm{C}$	AVG	Ver A	$\mathrm{Ver}\ B$	$\mathrm{Ver}\ \mathrm{C}$	AVG	Ver A	Ver B	$\mathrm{Ver}\ \mathrm{C}$	AVG
Ds chosen 0%	7%	17%	21%	15%	21%	22%	19%	20%	19%	27%	15%	20%
Ds chosen 0%–5%	36%	29%	41%	36%	38%	43%	38%	39%	38%	27%	34%	33%
Ds chosen 5%+	56%	53%	37%	49%	42%	34%	41%	39%	43%	45%	50%	46%

QUANTITATIVE EVIDENCE: DISTRIBUTION STATISTICS

"Ideal" distribution statistics:

- Center: 0.7 [5-option] or 0.74 [4-option] (Lord, 1952)
- Standard Deviation: 0.100 [5-option] or 0.087 [4-option]
- ▶ Skew and Kurtosis: 0

Negative kurtosis suggests more data to appear in the tails of the distribution (a uniform distribution has a kurtosis of -1.2) and a positive kurtosis suggests little data to appear in the tails (a logistic distribution has a kurtosis of 1.2) (Ho & Yu, 2015).

	Fall 2017			Fall 2018				Fall 2019				
	Ver A	Ver B	Ver C	AVG	Ver A	Ver B	Ver C	AVG	Ver A	Ver B	Ver C	AVG
Mean	0.76	0.77	0.81	0.78	0.76	0.83	0.74	0.77	0.77	0.77	0.76	0.77
Median	0.82	0.80	0.89	0.83	0.78	0.83	0.75	0.78	0.79	0.80	0.78	0.79
Std Dev	0.168	0.181	0.170	0.174	0.150	0.149	0.158	0.155	0.121	0.136	0.122	0.127
Skewness	-1.64	-1.15	-1.20	-1.33	-0.39	-1.63	-0.56	-0.86	-0.71	-0.96	-0.71	-0.79
Kurtosis	3.46	0.97	0.62	1.68	-1.15	4.05	0.43	1.11	0.05	0.46	-0.47	0.02

QUANTITATIVE EVIDENCE: ITEM CORRELATIONS

Point-Biserial Correlation (PBC) is an item-level correlation between marking an item correct/incorrect and a student's overall score.

Positive PBC corresponds to high-achieving students marking the question correctly while low-achieving students mark the same question incorrectly, while negative PBC corresponds to the inverse relation (Varma, 2006).

	Fall 2017				Fall 2018				Fall 2019			
	Ver A	Ver B	Ver C	AVG	Ver A	Ver B	Ver C	AVG	Ver A	Ver B	Ver C	AVG
$PBCs \le 0$	0%	0%	4%	1%	0%	4%	0%	1%	0%	0%	0%	0%
PBCs 0-0.15												
PBCs 0.15-0.25	4%	13%	16%	11%	17%	8%	17%	14%	0%	14%	18%	11%
$\mathrm{PBCs} \geq 0.25$	88%	83%	72%	81%	83%	63%	79%	75%	95%	73%	82%	83%

QUANTITATIVE EVIDENCE: TEST CORRELATIONS

Kuder–Richardson Formula 20 (KR-20) reliability coefficient is used to estimate the internal reliability of an assessment (Salvucci et al., 1997).

A high KR-20 suggests the assessment would highly correlate between alternative forms

	Fall 2017			Fall 2018				Fall 2019				
	Ver A	Ver B	Ver C	AVG	Ver A	Ver B	Ver C	AVG	Ver A	Ver B	Ver C	AVG
KR-20	0.799	0.792	0.599	0.730	0.736	0.614	0.735	0.695	0.727	0.654	0.710	0.697

Evidence of Success

Conclusions

References

OVERALL QUANTITATIVE EVIDENCE

				2017	2018	2019
Measure	Rating	Description		AVG	AVG	AVG
Effective Distractors	Poor	Items w/ 0 EDs		21%	15%	5%
Distractors chosen at 5%+.	Okay	Items w/ 1 EDs		29%	29%	36%
	Good	Items w/ 2+ EDs		49%	47%	59%
Distractor Chosen	Poor	Distractors chosen 0%		15%	20%	20%
Overall percentage chosen.	Okay	Distractors chosen 0%–5%		36%	39%	33%
	Good	Distractors chosen 5%+		49%	39%	46%
	Poor	Statistics suggest	Mean	0.78		
Item Difficulty		non-normal distribution.	Med	0.83		
Proportion of students answering each			StDev	0.174		
item correctly.			Skew	-1.33		
			Kurt	1.68		
Mean and Median describe the center	Okay	Statistics suggest some-	Mean		0.77	
of the distribution. Ideal: 0.7 or 0.74.		what normal distribution	Med		0.78	
Standard Deviation describes the		near "good" center and	StDev		0.155	
spread of the distribution. Ideal: 0.100		standard deviation.	Skew		-0.86	
or 0.087.			Kurt		1.11	
		Statistics suggest normal	Mean			0.77
Skew describes the symmetry of distri-		distribution near "good"	Med			0.79
bution. Ideal: 0.	Good	center and low standard	StDev			0.127
Kurtosis describes the shape of the tail		deviation.	Skew			-0.79
to the peak of a distribution. Ideal: 0.			Kurt			0.02
to the peak of a anstribution. rueat. 0.	Poorest	Below 0		1%	1%	0%
Point Biserial Correlation	Poor	Between 0 and 0.15		9%	10%	6%
Correlation between score on item and	Okay	Between 0.15 and 0.25	11%	14%	11%	
total score.	Good	0.25 and above	81%	75%	83%	
	Poor	0.5 or below; Between 0.9 and	1.0			
KR-20	Good	Between 0.5 and 0.8	0.730	0.695	0.697	
Correlation of alternative forms.	Ideal	0.80 - 0.9				

IntroductionDevelopment000000000000000

Evidence of Success

Conclusions

References

OUTLINE

Introduction

Development

Evidence of Success

Conclusions

BENEFITS

- Create numerous, high-quality assessments that target conceptions and can be used to diagnosis/address errors.
- Frees up instructor time for more free-response time.
- Can scale up best practices in math ed.

CURRENT OBSTACLES

- Developed only for College Algebra topics.
- Needs more integration of math ed research results.
- GUI currently written for Linux only.
- Students need to be taught how to answer in intervals.

Introduction

OTHER USES

Open-Source Homework System

OTHER USES

- Open-Source Homework System
- ► Intelligent Tutoring System (Stefanutti et al., 2020)

OTHER USES

- Open-Source Homework System
- ▶ Intelligent Tutoring System (Stefanutti et al., 2020)
- ► Large-Scale Mastery-Based Grading

OTHER USES

- Open-Source Homework System
- ► Intelligent Tutoring System (Stefanutti et al., 2020)
- Large-Scale Mastery-Based Grading
- Automated Assessment Reports

10 quizzes, 2 topics per quiz, 10 questions per topic.

- Q1: 20 questions per version
- Q2: 40 questions per version
- Q3: 60 questions per version
- Q4: 80 questions per version
- Q5: 120 questions per version
- Q6-10: 160 questions per version

With 3 versions per exam, I end up generating...

10 quizzes, 2 topics per quiz, 10 questions per topic.

- Q1: 20 questions per version
- Q2: 40 questions per version
- Q3: 60 questions per version
- Q4: 80 questions per version
- Q5: 120 questions per version
- Q6-10: 160 questions per version

With 3 versions per exam, I end up generating... 3360 Total Questions!

- 10 quizzes, 2 topics per quiz, 10 questions per topic.
- Q1: 20 questions per version
- Q2: 40 questions per version
- Q3: 60 questions per version
- Q4: 80 questions per version
- Q5: 120 questions per version
- Q6-10: 160 questions per version

With 3 versions per exam, I end up generating... 3360 Total Questions! Each question requires 15-30 "different" versions.

10 quizzes, 2 topics per quiz, 10 questions per topic.

- Q1: 20 questions per version
- Q2: 40 questions per version
- Q3: 60 questions per version
- Q4: 80 questions per version
- Q5: 120 questions per version
- Q6-10: 160 questions per version

With 3 versions per exam, I end up generating... 3360 Total Questions!

Each question requires 15-30 "different" versions.

With \sim 300 students, students would need targeted feedback to about 60,000 questions.

References

Evidence of Succes

Conclusions

References

AUTOMATED ASSESSMENT REPORTS

Objective	Sub-Objective	Score	Possible Issue (if applicable)
Construct linear functions	using a slope and point.	1/1	
	using two points.	1/1	
	using a parallel/perpendicular line and point.	1/1	
	Standard to Slope-Intercept.	1/1	
Convert between linear forms.	Slope-Intercept to Standard.	0/1	Standard form requires integer coefficients.
initial format	Point-Slope to Standard.	0/1	Standard form requires integer coefficients.
Convert between	Graph to Equation.	1/1	
linear representations.	Equation to Graph.	1/1	
Solve linear equations	with integer coefficients.	1/1	
	with rational coefficients.	0/1	Did not distribute the negative in front of the second fraction.

RESOURCES

Contact: dchamberlain31@ufl.edu

Github:

https://github.com/Darryl-Chamberlain-Jr/Auto-DIG

Open-Access HW System:

https://xronos.clas.ufl.edu/ufmac1105

Mastery-Based Course:

https://ufl.instructure.com/courses/408087

Papers:

https://people.clas.ufl.edu/dchamberlain31/current-projects/

References I

- Dann, R. (2014). Assessment as learning: blurring the boundaries of assessment and learning for theory, policy and practice. Assessment in Education: Principles, Policy & Practice, 21(2), 149-166. doi: 10.1080/0969594X.2014.898128
- Hattie, J., & Timperley, H. (2007). The power of feedback. *Review of Educational Research*, *88*(1), 81–112.
- Hingorjo, M., & Jaleel, F. (2012). Analysis of one-best mcqs: The difficulty index, discrimination index and distractor efficiency. *JPMA-Journal of the Pakistan Medical Association*, 62(2), 142–147.

References II

- Ho, A. D., & Yu, C. C. (2015). Descriptive statistics for modern test score distributions: Skewness, kurtosis, discreteness, and ceiling effects. *Educational and Psychological Measurement*, 75(3), 365–388.
- Lord, F. M. (1952). The relation of the reliability of multiple-choice tests to the distribution of item difficulties. *Psychometrika*, *17*(2), 181–194.
- Salvucci, S., Walter, E., Conley, V., Fink, S., & Saba, M. (1997). Measurement error studies at the national center for education statistics. U.S. Department of Education Office of Educational Research and Improvement.

References

References III

- Stefanutti, L., de Chiusole, D., Gondan, M., & Maurer, A. (2020). Modeling misconceptions in knowledge space theory. Journal of Mathematical Psychology, 99, 102435. Retrieved from http://www.sciencedirect.com/science/article/ pii/S0022249620300791 doi: https://doi.org/10.1016/j.jmp.2020.102435
- Varma, S. (2006). *Preliminary item statistics using point-biseral correlation and p-values*. Morgan Hill CA: Educational Data Systems Inc.
- Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-analysis of educational feedback research. *Frontiers in Psychology*. doi: 10.3389/fpsyg.2019.03087