## Equation sheet Exam 1 PHY2048

Chapter 1: Measurements, Estimation, Vectors
$\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}=\overrightarrow{\boldsymbol{C}}$
$A_{x}-B_{x}=C_{x}$
$A_{y}-B_{y}=C_{y}$
$|\overrightarrow{\boldsymbol{C}}|=\sqrt{C_{x}^{2}+C_{y}^{2}}$
$\theta=\tan ^{-1} \frac{C_{y}}{C_{x}}$

$\vec{A}+\vec{B}=\vec{C}$
$A_{x}+B_{x}=C_{x}$
$A_{y}+B_{y}=C_{y}$
$|\overrightarrow{\boldsymbol{C}}|=\sqrt{C_{x}^{2}+C_{y}^{2}}$
$\theta=\tan ^{-1} \frac{C_{y}}{C_{x}}$

$|A| \cos \theta$
$\overrightarrow{\boldsymbol{A}} \square \overrightarrow{\boldsymbol{B}}=C=|\overrightarrow{\boldsymbol{A}}||\overrightarrow{\boldsymbol{B}}| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

$C$ is a scalar quantity that corresponds to the projection of $A$ on $B$


$$
\begin{array}{ll}
\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=\overrightarrow{\boldsymbol{D}} & \begin{array}{l}
\text { C is a vector that is perpendicular to } \\
\text { both vectors } A \text { and } \mathrm{B}
\end{array} \\
|\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}|=|\overrightarrow{\boldsymbol{A}}||\overrightarrow{\boldsymbol{B}}| \sin \theta & \\
\overrightarrow{\boldsymbol{D}}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\boldsymbol{i}}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{\boldsymbol{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\boldsymbol{k}}
\end{array}
$$

Chapter 2\&3: Motion in a Straight Line and in a Plane
Equations of motion $\int_{x_{0}}^{x} d \overrightarrow{\boldsymbol{x}}=\int_{t_{0}}^{t} \overrightarrow{\boldsymbol{v}}(t) d t \rightarrow \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{x}}_{0}+\int_{t_{0}}^{t} \overrightarrow{\boldsymbol{v}}(t) d t \quad \int_{v_{0}}^{v} d \overrightarrow{\boldsymbol{v}}=\int_{t_{0}}^{t} \overrightarrow{\boldsymbol{a}}(t) d t \rightarrow \overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{v}}_{0}+\int_{t_{0}}^{t} \overrightarrow{\boldsymbol{a}}(t) d t$

Displacement: A "vector" $\Delta \overrightarrow{\boldsymbol{r}}$ that points between two locations. The vector begin at the initial location and ends at the final.

$$
\text { displacenent }=\Delta \overrightarrow{\boldsymbol{r}}=\overrightarrow{\boldsymbol{r}}_{f}-\overrightarrow{\boldsymbol{r}}_{i}
$$

Distance: A "scalar" quantity that describes the length of the path taken between

$$
\text { distance }=|\Delta \overrightarrow{\boldsymbol{r}}|=\sqrt{\left(x_{f}-x_{i}\right)^{2}+\left(y_{f}-y_{i}\right)^{2}}
$$

Definition of velocity and acceleration. note: velocity and acceleration are vector quantities

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{v}}_{\text {average }}=\frac{\overrightarrow{\boldsymbol{x}}_{f}-\overrightarrow{\boldsymbol{x}}_{i}}{\Delta t}, \quad \overrightarrow{\boldsymbol{v}}_{\text {inst }}=\lim _{\Delta t \rightarrow 0} \frac{\overrightarrow{\boldsymbol{x}}_{f}-\overrightarrow{\boldsymbol{x}}_{\boldsymbol{i}}}{\Delta t}=\frac{\boldsymbol{d} \overrightarrow{\boldsymbol{x}}}{d t} \\
& \overrightarrow{\boldsymbol{a}}_{\text {average }}=\frac{\overrightarrow{\boldsymbol{v}}_{f}-\overrightarrow{\boldsymbol{v}}_{i}}{\Delta t}, \quad \overrightarrow{\boldsymbol{a}}_{\text {inst }}=\lim _{\Delta t \rightarrow 0} \frac{\overrightarrow{\boldsymbol{v}}_{f}-\overrightarrow{\boldsymbol{v}}_{i}}{\Delta t}=\frac{\boldsymbol{d} \overrightarrow{\boldsymbol{v}}}{d t}
\end{aligned}
$$

## Chapter 4\&5: Newton's Law and Applications

Newton's Laws of Motion

- $\quad 1^{\text {st }}$ : A body at rest will remain at rest a body in motion will remain in motion unless acted upon by an external force

$$
\sum \overrightarrow{\boldsymbol{F}}=0
$$

- $\quad 2^{\text {nd }}:$ The net sum of forces accelerates an object by an amount proportional to its mass and in the direction of the net forces.

$$
\sum \overrightarrow{\boldsymbol{F}}=m \overrightarrow{\boldsymbol{a}}
$$

- $\quad 3^{\text {rd }}:$ For every action there is an opposite and equal reaction. Action reaction pairs never act on the same object

$$
\overrightarrow{\boldsymbol{F}}_{A o n B}=-\overrightarrow{\boldsymbol{F}}_{B o n A}
$$

(a) Eingine, chains.
and rian
(b) Itee-body diayram for engine
(c) Fine-body diapram for ring $O$

(a) Pulling a crate at an angle


