Equation sheet Exam II

Chapter 6: Work, Energy and Power

Work definition
$W=\overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{s}}=F s \cos \theta$
Work by varing force or curved path
$W=\int_{s_{1}}^{s_{2}} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{s}}=\int_{s_{1}}^{s_{2}} F \cos \theta d s$
Work-energy relation, definition of $K E$
$W=\Delta K=K E_{2}-K E_{1}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}$

Definition of Power
$P_{a v}=\frac{\Delta W}{\Delta t}, \quad P_{a v}=F_{\|} v_{a v}$
$P=\frac{d W}{d t}, \quad P=F_{\|} v$

Chapter 8: Momentum, Impulse, Conservation of Momentum
$\overrightarrow{\boldsymbol{p}}=m \overrightarrow{\boldsymbol{v}}: p_{x}=m v_{x}, p_{y}=m v_{y}$
Momentum is conserved if there are no external forces
$\sum \overrightarrow{\boldsymbol{F}}_{\text {ext }}=\frac{\Delta \overrightarrow{\boldsymbol{p}}}{\Delta t}=0 \rightarrow \overrightarrow{\boldsymbol{p}}_{T, \text { initial }}=\overrightarrow{\boldsymbol{p}}_{T, \text { final }}$

Impulse is defined as:
$\overrightarrow{\boldsymbol{J}}=\int_{t_{1}}^{t_{2}} \sum \overrightarrow{\boldsymbol{F}} d t$
Impulse-momentum theorem:
$\overrightarrow{\boldsymbol{J}}=\overrightarrow{\boldsymbol{p}}_{2}-\overrightarrow{\boldsymbol{p}}_{1}$
Center of Mass and Momentum
$x_{c m}=\frac{x_{1} m_{1}+x_{2} m_{2}+x_{3} m_{3}+\cdots}{m_{1}+m_{2}+m_{3}+\cdots}$

Collisions (momentum is cnrv'd)
Elastic: KE is conserved implies the following velocity relation
$\left(\overrightarrow{\mathbf{v}}_{B, f}-\overrightarrow{\mathbf{v}}_{A, f}\right)=-\left(\overrightarrow{\mathbf{v}}_{B, i}-\overrightarrow{\mathbf{v}}_{A, i}\right)$
Inelastic: KE is not conserved
Completely inelastic: objects stick together after they collide and

$$
\overrightarrow{\mathbf{v}}_{B, f}=\overrightarrow{\mathbf{v}}_{A, f}
$$

Chapter 7: Potential Energy and Conservation of Energy
Potential Energy (U) (conservative forces)
$W_{g r a v i t y}=U_{g r a v, 1}-U_{g r a v, 2}=-\Delta U_{g r a v}=m g\left(y_{1}-y_{2}\right)$
$W_{\text {elastic }}=U_{\text {elas }, 1}-U_{\text {elas }, 2}=-\Delta U_{\text {elas }}=\frac{1}{2} k\left(x_{1}^{2}-x_{2}^{2}\right)$
Conservation of Energy
Force from Energy is

$$
F_{x}(x)=-\frac{d U(x)}{d t}
$$

In 3-D
$E_{\text {Total }, 2}=E_{\text {Total }, 1}$
$E_{\text {Total }, 1}=K E+U_{\text {elas }}+U_{\text {grav }}+W_{\text {other }}$
$\overrightarrow{\boldsymbol{F}}=-\left(\frac{\partial U}{\partial x} \hat{\boldsymbol{i}}+\frac{\partial U}{\partial y} \hat{\boldsymbol{j}}+\frac{\partial U}{\partial x} \hat{\boldsymbol{k}}\right)$
$K E_{2}+U_{\text {grav, }, 2}+U_{\text {elas }, 2}=K E_{1}+U_{\text {grav }, 1}+U_{\text {elas }, 1}+W_{\text {other }}$

Chapter 9: Rotational Motion

Angular velocity and acceleration Angular to linear relations
$\omega_{\text {inst }}=\frac{d \theta}{d t} ; \quad \alpha_{\text {inst }}=\frac{d \omega}{d t}$
Angular kinematic relations
$\omega_{2}=\omega_{1}+\alpha t$
$\theta_{2}=\theta_{1}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$

$$
\begin{aligned}
& s_{\text {arc-length }}=r \theta \\
& v_{\text {tangential }}=\omega r \\
& a_{\text {tangential }}=\alpha r \\
& a_{\text {radial }}=\frac{v_{\text {tangential }}^{2}}{r}=\omega^{2} r
\end{aligned}
$$

$$
\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha\left(\theta_{2}-\theta_{1}\right)
$$

Potential Energy

$U=M g y_{C M}$
Moment of Inertia, general form, see table 9.2
$I=\sum_{i} m_{i} r_{i}^{2}=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+\ldots$
$y_{c m}=\frac{y_{1} m_{1}+y_{2} m_{2}+y_{3} m_{3}+\cdots}{m_{1}+m_{2}+m_{3}+\cdots}$

Chapter 10: Rotational Dynamics

The torque τ is given by $\vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$, the magnitude of $|\vec{\tau}|=|\overrightarrow{\mathbf{r}}| \overrightarrow{\mathbf{F}} \mid \sin \theta$, where $\overrightarrow{\mathbf{r}}$ is a vector pointing from the pivot point to the where the $\overrightarrow{\mathbf{F}}$ acts. The angle θ is the smallest angle between the vectors when located tail to tail.
$\sum \vec{\tau}=I \vec{\alpha}$, for rigid bodies the relation $a=r \alpha$ is useful

Kinetic Energy of object with rotational and linear motion
$K E_{\text {total }}=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I_{c m} \omega^{2}$
Rolling without slipping

$$
v_{\text {bottom }}=0, v_{C M}=R \omega, v_{\text {top }}=2 R \omega
$$

Angular Momentum
$L=I \omega$, where I is the moment of inertia and ω is the angular velocity $L=m v l$, for a single particle where l is perpendicular distance from axis and $m v$ is the linear momentum
Conservation of Angular Momenta follows from Newton's 2nd Law
$\frac{d L}{d t}=\sum \tau_{\text {ext }}=I \alpha=I \frac{d \omega}{d t}$
Work Energy theorem for angular motion
$W=\frac{1}{2} I_{C M}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)$
thus $L_{\text {Total }, 1}=L_{\text {Total }, 2}$ if and onf if $\sum \tau_{e x t}=0$, ie., the are no external torques

Chapter 11: Equilibrium

Equillibrium of rigid body

$\sum \overrightarrow{\boldsymbol{F}}=0: \sum F_{x}=0, \sum F_{y}=0$ and $\sum \vec{\tau}=0$
FBD for man w/ladder on friction less wall, The torque is computed about axis at B but you can use anywhere else as axis of rotation

To solve equilibrium problems begin by using FBD approach. Each force is now applied on extended object. Next write down $\Sigma F=0$, in x and y , and then write down $\Sigma \tau=0$, take the axis of rotation for the torques to be anywhere on the object that is the most convenient. Finally solve for the unkwnown(s) from the resulting three equation.

