Equation sheet Final Exam, PHY2048

Chapter 11: Equlibrium

Equillibrium of rigid body: $\sum \overrightarrow{\boldsymbol{F}}=0$: and $\sum \vec{\tau}=0$
FBD for man w/ladder on friction less wall Torque computed about axis at B but anywhere else is OK .

To solve equilibrium problems begin by using FBD approach. Each force is now applied on extended object. Next write down $\Sigma F=0$, in x and y, and then write down $\Sigma \tau=0$, take the axis of rotation for the torques to be anywhere on the object at equilibrium that's convenient. Finally Inspect three equation and solve for unknown(s).

Chapter 12: Fluid Mechanics Pressure in a fluid at rest (Pascal's Law)

Density and pressure $\rho=\frac{m}{V} ;$ $p=\frac{d F_{\perp}}{d A}$

Archimede's principle
$\mathrm{F}_{B}=\rho_{f} g V$ The Buoyant is the upward force
excerted by fluid on a $p_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2}^{2}$
body immersed
equal to amount of
fluid displaced.

Chapter 13: Gravitation

Newton's Law of Universal Gravity. F is the force exerted by objects of mass m_{1} and m_{2} on one another at a distance r apart. The direction of force is along the line joining the two objects. These force obey Newton's third law and can be considered an action reaction pair.

$$
\overrightarrow{\boldsymbol{F}}=\boldsymbol{G}_{N} \frac{m_{1} m_{2}}{r^{2}} \widehat{\boldsymbol{r}}
$$

Equations for satellite motion in a circular orbit. Here r is the distance between the satellite and the object being orbited. G_{N} is Newton's constant and T is the period

$$
\begin{aligned}
& \text { or time it takes the satellite to go one time around. } \\
& \qquad F_{G}=m a_{r a d}=>F_{G}=m_{\text {Sat }} \frac{v^{2}}{r} \\
& G_{N} \frac{G_{\text {Sat }} m_{\text {Earth }}}{r^{2}}=m_{\text {Sat }} \frac{v^{2}}{r}=>G_{N} \frac{m_{\text {Earth }}}{r}=\left(\frac{2 \pi r}{T}\right)^{2}=>T=\frac{2 \pi}{\sqrt{G_{N} m_{\text {Earth }}}} r^{3 / 2}
\end{aligned}
$$

Chapter 14: Periodic Motion

Simple harmonic motion, restorative force proportional to x

$$
F_{x}=-k x, \quad m a_{x}=-k x, \quad m \frac{d^{2} x}{d t^{2}}=-k x \rightarrow \frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
$$

Equations of motion for a mass attached to a spring
$x(t)=A \cos (\omega t) ; \quad v_{x}=\frac{d x}{d t}=-\omega A \sin \omega t ; \quad a_{x}=\frac{d^{2} x}{d t^{2}}=-\omega^{2} A \cos \omega t ; \quad \omega=\sqrt{\frac{k}{m}}$
Total Energy of a mass attached to a spring on a frictionless surface
$E_{T}=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}, \quad \rightarrow v_{x}=\sqrt{\frac{k}{m}} \sqrt{A^{2}-x^{2}}$

The physical pendulum
$A=$ Amplitude (\pm max displacement from equillibrium) $[m$]
$T=$ Period, time it takes to complete one cycle [s]
$f=$ Frequency, how many cycles per sec [Hz or $1 / \mathrm{s}$]
$\omega=$ Angular frequency which is equal to $2 \pi f[\mathrm{rad} / \mathrm{s}]$
$f=\frac{1}{T}$, frequency and period are inverse of each other
Angular simple harmonic motion is
$\omega=\sqrt{\frac{\kappa}{I}}$, where κ is the torsion constant and I is the moment of inertia
The simple pendulum
$\omega=\sqrt{\frac{g}{L}}$, where g is the gravitational acceleration, L is the length of the pendulum
$\omega=\sqrt{\frac{m g d}{I}}$, where g is gravitational constant and d is the distance btw center-of-mass and axis, m is the mass and I is the moment of inertia

Chapter 15: Mechanical Waves

The speed of a mechanical wave is:
$v_{\text {wave }}=f \lambda$, where f is frequency and λ is the wavelength.
The magnitude of v depends only on the physical properties
of the media through which the wave is propagating. Thus for a string of length l the wave speed
$v_{\text {wave }}=\sqrt{\frac{F_{\perp}}{\mu}}$, where μ is the linear mass density or mass per unit length of the string.

Power and Intensity and the Inverse square law
$I=\frac{P}{4 \pi r^{2}} ; \quad \frac{I_{1}}{I_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}}$
Power in a sinousoidal wave,
$P(x, t)=\sqrt{\mu F} \omega^{2} A^{2} \sin ^{2}(k x-\omega t)$
$P_{\max }=\sqrt{\mu F} \omega^{2} A^{2}, P_{\text {ave }}=\frac{1}{2} \sqrt{\mu F} \omega^{2} A^{2}$

Wave superposition
$y_{\text {total }}(x, t)=y_{1}(x, t)+y_{2}(x, t)$
Standing waves on a string
$y(x, t)=A_{s W} \sin k x \sin \omega t$
$f_{n}=n \frac{v}{2 L}=n f_{1} \quad(n=1,2,3 \ldots)$
$\lambda_{n}=\frac{2 L}{n}=\frac{1}{n} \lambda_{1} \quad(n=1,2,3 \ldots)$

Equation that describes a mechanical wave
$y(x, t)=A \cos 2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right), \quad$ Velocity and acceleration of any particle on a transverse wave
$y(x, t)=A \cos (k x-\omega t)$,
$v_{y}(x, t)=\frac{d x}{d t}=\omega A \sin (k x-\omega t)$
with $k \equiv \frac{2 \pi}{\lambda}$ and $\omega \equiv \frac{2 \pi}{T}$
$a_{y}(x, t)=\frac{d^{2} x}{d t^{2}}=-\omega^{2} A \cos (k x-\omega t)$
These eq. describe waves propagating to the right with a phase (), amplitude A, angular frequency ω and wave number k

