Properties of Charges

- Like charges repel
- Unlike charges attract
- Conservation of charge: charge can't be created or destroyed however it can be transferred from on object to another
- In conductors the charge carriers (electrons) are free to move about and will do so when exposed to an electric field. The charges will position themselves at the edges and will induce an opposing E field. This is why the E field inside a conductor is zero when equilibrium is reached.
- Even though the charge carriers inside an insulator are not free to move a charge can be I induced in an insulator via the polarization of the atoms or molecules. In insulators the E field inside doesn't have to be zero.
$\overrightarrow{\boldsymbol{E}}=\frac{\overrightarrow{\boldsymbol{F}}_{\text {electric }}}{q_{\text {test }}}$ Definition of Electric Field
$\overrightarrow{\boldsymbol{E}}=k \frac{\left|q_{\text {source }}\right|}{r^{2}} \widehat{\boldsymbol{r}} \begin{aligned} & \text { The electric field due to a point source or } \\ & \text { spherical charge distribution }\end{aligned}$
The mass \& charge of particles

$$
\begin{aligned}
& m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \\
& q_{e}=-1.60 \times 10^{-19} \mathrm{C} \\
& m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \\
& q_{e}=+1.60 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

The Principle of Superposition then add the components

Coulomb's Law

r hat is a unit vector pointing in the direction of the force. Its direction is determined by the signs of the two charges but runs parallel to a line btw the them, r^{2} is the distance btw the charges squared

The total force or total electric field is the vector sum of the forces or electric fields of each charged source. Remember that to add vectors first resolve them into components and
(b) The field produced by a negative point charge points toward the charge.

$W_{a \rightarrow b}=F \Delta s \cos \theta=-\Delta U=U_{a}-U_{b}=\Delta K \quad$ Chapter 18

$$
C=\frac{Q}{V} \quad \text { Definition of Capacitance }
$$

The work-energy theorem states that change in kinetic energy is equal to the work done on the particle or the negative of the change in potential energy
$W_{a \rightarrow b}=k q q^{\prime}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)$
This is the work done on a test charge q ' that starts at point a and ends at point b in the vicinity of the electric field caused by point q.
$U=k \frac{q q^{\prime}}{r} \quad \begin{aligned} & \text { This is the potential energy } U \text { of a system that consists of a point charge } q^{\prime} \text { in the } \\ & \text { vicinity of the field due to point } q \text { and a distance } r \text { away from } q\end{aligned}$ vicinity of the field due to point q and a distance r away from q.

$U_{\text {total }}=k q^{\prime}\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}+\cdots\right) \begin{aligned} & \text { This is the total potential energy of a system consisting } \\ & \text { of a point charge } q^{\prime} \text { in the vicinity of } \mathrm{n} \text { number of } \\ & \text { charges } q_{i} \text { each a distance } r_{i} \text { from } q^{\prime}\end{aligned}$
$V=\frac{U}{q^{\prime}}, \quad V_{\text {total }}=k\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}+\cdots\right)$
The definition of potential and the total potential due to n charges
$\Delta V=E \Delta x$ in In a constant E field
he change in potential $C_{K}=K C_{0}, V_{K}=\frac{V_{0}}{K}, E_{K}=\frac{E_{0}}{K} \begin{aligned} & \text { Where } \mathrm{K} \text { is the dielectric } \\ & \text { constart, work are related } \\ & \text { coriginal quantities }\end{aligned}$ $W=q E \Delta x$ and work are related $U_{\text {cap }}=W_{\text {total }}=\frac{V Q}{2}=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2} \quad \begin{aligned} & \text { The energy stored in } \\ & \text { a capacitor }\end{aligned}$
$E=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0} A}$
The electric field stored in a parallel plate capacitor with no dielectric
$C_{0}=\varepsilon_{0} \frac{A}{d} \quad \begin{aligned} & \text { The capacitance of a parallel plate capacitor } \\ & \text { without a dielectric }\end{aligned}$
$I=\frac{\Delta Q}{\Delta t}$, defintionof current I. The currentalwaysflowsfrom + to -
$R=\frac{V}{I}$, definitionof resistance $R \quad R_{T}=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$, the temperature dependence of the resistance $R=\rho \frac{L}{A}$, definitionof resistivity ρ where L is the lengthof the conductorand A is the cross-sectionalarea $\underset{\substack{\text { Not } \\ \text { (a) }}}{\text { Kunction }}$

(a) Sign conventions for emfs
.
$+\mathcal{E}$: Travel direction from-to +:

$$
\text { (b) } R_{1}, R_{2} \text {, and } R_{3} \text { in parallel } P=V I=\varnothing I \quad \text { Power supplied to a circuit }
$$

Chapter 19

$$
\begin{array}{rl}
\text { (b) } R_{1}, R_{2} \text {, and } R_{3} \text { in parallel } 1 \\
R_{1} & P=V I=E 1 \text { Power supplied to a circuit } \\
P-I^{2} R \text { Power dissinated hy a resistor }
\end{array}
$$

$$
\text { (a) } R_{1}, R_{2} \text {, and } R_{3} \text { in series }
$$

$$
V_{a b}=V_{1}=V_{2}=V_{3}
$$

$$
\xrightarrow[I]{a}
$$

$$
I_{a b}=I_{1}+I_{2}+I_{3}
$$

$$
V_{a b}=V_{1}+V_{2}+V_{3}
$$

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

$$
I_{a b}=I_{1}=I_{2}=I_{3}
$$

$$
R_{e q}=R_{1}+R_{2}+R_{3}
$$

The formulas describing the time dependence of the current, and charge for an RC circuit, τ is the time constant of the circuit

