Chapter 20

$$\vec{F} = q\vec{v} \times \vec{B}$$
, $|\vec{F}| = qvB\sin\phi$ Traveling through a region of space with magnetic field *B*, direction give by R.H.R.
 $F = |q|vB = m \frac{v^2}{R}$ Motion of charged particle in magnetic field with r_{1} three velocity.
 $\vec{F} = \vec{I}\vec{L}\times\vec{B}$, Force on a conductor with current *I* & length *L* in a region of space with magnetic field *B*. The direction of force given by R.H.R.
 $\vec{F} = \vec{I}\vec{L}\times\vec{B}$, Force on a conductor with current *I* & length *L* in a magnitude is *I* the current time the area *A*. Multiply by $\vec{\mu} = INA\vec{n}$ the number of turns N if more than one loop.
 $\vec{T} = \vec{\mu} \times \vec{B}$ The torque on a loop. The sum is over all segments of the loop. Alternatively you can use $\mu \times B$. Where μ is the direction normal to the surface and its magnitude is *I* the current time the area *A*. Multiply by $\vec{\mu} = INA\vec{n}$ the number of turns N if more than one loop.
 $B = \frac{\mu_0 I}{2R}$ The magnitude of the *B* field inside a long coli with $n = N/A$ and divertion points along the length of the coil RHR.
 $B = \mu_0 NI$ The magnitude of the *B* field inside a long coli with $n = N/A$ and consister with the R.H. R.
 $\vec{F} = \vec{L} = \frac{\mu_0 II'}{2\pi r}$ The torce per unit length bor two parallel conductors with current *I* and at distance *r* from the center of to roid. The direction points along the length of the coil RHR.
 $B = \frac{\mu_0 NI}{2\pi r}$ The electric field and magnetic fields are related by the speed of light in eletromagnetic EM waves:
 $c = \frac{1}{\sqrt{\mu_0 c_0}}$ and $c_{0r} = 3 \times 10^n$ m's for an elegad provide the tradition only of constants μ_0 and $c_{0r} = 3 \times 10^n$ m's for energy donsity energy per unit us is given by the right (ILXB).
Chapter 23 The everted by an EAM wave error $\frac{1}{2}c_0C^2 + \frac{1}{2}\mu_0 B^2 = c_0^2E^2$ wis the energy density energy forw per or is given by the right (ILXB).
Chapter 23 The average momentum of an EAM wave per unit area, either $\frac{1}{R} = \frac{2}{\pi} = \frac{2}{\pi} = \frac{2}{\pi} = \frac{1}{R} = \frac{2}{R}$. The intext of refraction, the speed of light and wavelen

Chapter 21

e magnetic flux

$$\Phi_{B} = \vec{B} \cdot \vec{A} = \left| \vec{B} \right| \left| \vec{A} \right| \cos \phi$$
 is the product of the B field, area

and the cosine of the angle btw the normal to the surface area B field ϕ .

Faraday's Law:
$$\mathscr{E} = \left| \frac{\Delta \Phi_B}{\Delta t} \right|$$

The time rate of change in the flux is equal to the electromotive force. The change in flux can be caused by a change in B field, a change in the Area or the angle btw the direction of B field, normal to surface the angle
$$\phi$$
. If there are more than one loop multiply above by number of loops N

z's Law: The direction of magnetically induced current or emf is h as to oppose the direction for the phenomena causing it.

asing current, fig. below (switch closed after being opened for a e)

$$I = \frac{E}{R}$$

$$I = \frac{T}{r}$$

$$I = \frac{1}{r} = \frac{L}{R}$$

$$i(t) = \frac{\mathcal{E}}{R} \left(1 - e^{-(R/L)t} \right)$$
$$\frac{\Delta i}{\Delta t} = \frac{\mathcal{E}}{L} e^{-(R/L)t}$$