Sign Rules:

1.Object distance s: When the object is on the same side of the reflecting or refracting surface as the incoming light, the object distance s is positive; otherwise, it is negative 2.Image distance \mathbf{s}^{\prime} : When the image is on the same side of the reflecting or refracting surface as the outgoing light, the image distance s' is positive; otherwise, it is negative. 3.Radius of curvature \boldsymbol{R} : When the center of curvature R is on the same side as the outgoing (reflected) light, the radius of curvature R is positive otherwise, it is negative.
$m=\frac{-s^{\prime}}{s}=\frac{y^{\prime}}{y}$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$
m is the magnification, y^{\prime} is the height of the image, y is the height of the object and s' and s are the distances between the mirror or lens and the image and object respectively.

The paraxial approximation where f is the focal length of the mirror and $f=R / 2$ the radius of curvature of the mirror divided by 2 .
$\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=\frac{n_{b}-n_{a}}{R}$
$m=\frac{y^{\prime}}{y}=-\frac{n_{a} s^{\prime}}{n_{b} s}$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$ and $\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
The paraxial approximation for a complex lens with index of refraction n and radii of curvature R_{1} and R_{2}.
 (2) Ray through center of lens does not deviate appreciably.
(3) Ray through the first focal point F_{1} emerges parallel to the axis.

$n=\frac{c}{v}, \quad \lambda=\frac{\lambda_{0}}{n}$ $\theta_{\text {incident }}=\theta_{\text {reflected }}$ $n_{a} \sin \theta_{a}=n_{b} \sin \theta_{b}$

Chapter 23

The index of refraction, the speed of light and wavelength in vacuum, c and λ_{0}

Law of reflection and Snell's Law, a and b correspond to different media
$\sin \theta_{\text {critical }}=\frac{n_{b}}{n} \quad$ The critical angle corresponds the angle at which total internal reflection occurs
$I=I \cos ^{2} \phi$ The intensity through polarizer for incident light that is polarized at angle ϕ
$I=I_{0} / 2$ The intensity through polarizer for incident unpolarized light

Chapter 25

Camera

$$
f_{\#}=\frac{f}{D}
$$

Camera
f In all devices below $1 / s+1 / s^{\prime}=1 / f$ applies
$f \#$ is the fstop, f is the focal length and D is the diameter of the aperture The intensity I is proportional to the square of the aperture diameter and the exposure time

(b) Microscope optics
Microscope

$$
M=m_{1} M_{2}=\frac{(25 \mathrm{~cm}) s_{1}^{\prime}}{f_{1} f_{2}}
$$

The objective forms a real, inverted image I inside the focal point F_{2} of the eyepiece.
The eyepiece uses the image $/$ as an object virtual image I^{\prime} (still is

For a Normal eye: Near point is 25 cm Far point is ∞

(1) Ray parallel to axis reflects through focal point.
(2) Ray through focal point reflects parallel to axis.
(3) Ray through center of curvature intersects the surface normally and reflects along its original path.
(4) Ray to vertex reflects symmetrically around optic axis.

(1) Reflected parallel ray appears to come from focal point. (2) Ray toward focal point reflects parallel to axis. (3) As with concave mirror: Ray radial to center of curvature intersects the surface normally and reflects along its original path. (4) As with concave mirror: Ray to vertex reflects symmetrically around optic axis.

Chapter 26

Double slit

$\left.\begin{array}{l}d \sin \theta=m \lambda \\ y_{m}=R \frac{m \lambda}{d}\end{array}\right\}$
const.

$\left.\begin{array}{l}d \sin \theta=\left(m+\frac{1}{2}\right) \lambda \\ y_{m}=R \frac{\left(m+\frac{1}{2}\right) \lambda}{d}\end{array}\right\}$ dest.
In real situations, the distance R to the screen is usually very much greater than the distance d between the slits ...

Thin films
(a) Interference between rays reflected from the two surfaces of a thin film

Light reflected from the upper and lower surfaces of the film comes together in the eye at P and undergoes interference.

Some colors interfere constructively and others destructively, creating the color bands we see.
d is the separation btw the slits and applies when d is of similar size as the wavelength λ.

Diffraction from a Single slit

Two slits produce one minimum between adjacent maxima.

(a) Two slits

Eight slits produce larger, narrower maxima in the same locations, separated by seven minima.

(b) Eight slits

With sixteen slits, the maxima are still taller and narrower, with more intervening minima.

(c) Sixteen slits

Path difference $=\frac{a}{2} \sin \theta$ Dark fringe (destructive)
$\frac{a}{2} \sin \theta=\frac{m \lambda}{2}, \quad(m= \pm 1, \pm 2 \ldots)$
$y_{m}=R \frac{m \lambda}{a}, \quad(m= \pm 1, \pm 2 \ldots)$
a is the width of the single slit which is much larger than the wavelength of light

Multiple slit diffraction:

The multiple slit problem the conditions found in the double slit exist similarly. The main difference is that the maxima (bright) band get narrower while the dark bands get small bright regions as shown in figure to the left.

Path difference $=d \sin \theta$
$d \sin \theta=m \lambda, \quad(m=0, \pm 1, \pm 2 \ldots)$
$d \sin \theta=\left(m+\frac{1}{2}\right) \lambda, \quad(m=0, \pm 1, \pm 2 \ldots)$

For thin films the path difference is $2 t$. The conditions for constructive or destructive interference
$2 t=m \lambda^{\prime} \quad$ constructive $2 t=\left(m+\frac{1}{2}\right) \lambda^{\prime} \quad$ destructive with $\quad \lambda^{\prime}=\frac{\lambda_{0}}{n}$
For thin films there is a phase shift (p.s.) of $1 / 2 \lambda$, when light reflects from a surface if the incident ray is in media of lower n_{a} than refracted ray n_{b}. No p.s. occurs if the convers ie., $n_{a}>n_{b}$. An odd number of p.s. will have the effect of swapping the constructive destructive interference criteria for the path difference.

Circular Aperture and resolving power

The first dark ring is :
$\sin \theta_{1}=1.22 \frac{\lambda}{D}$
The minimum separation of two object (Rayleigh's criterion)

$$
\theta_{\text {res }}=1.22 \frac{\lambda}{D}
$$

X-ray Diffraction The Bragg conditions are (where the bright spots lie)

1. $\theta_{a}=\theta_{r}$
$2.2 d \sin \theta_{a}=m \lambda$

(a) Scattering of waves from a rectangular array

Interference from adjacent atoms in a row is constructive when the path lengths $a \cos \theta_{a}$ and $a \cos \theta_{\mathrm{r}}$ are equal.

(b) Scattering from adjacent atoms in row (c) Scattering from atoms in adjacent rows

Interference from atoms in adjacent rows is constructive when the path difference $2 d \sin \theta$ is an integral

