Classical Physics Ph.D. Qualifying Exam Fall 2021 Department of Physics at FIU

Instructions: There are nine problems on this exam. Four on Mechanics (**CM**), three on Electricity and Magnetism (**EM**), and two on Statistical Physics and Thermodynamics (**SP**). You must solve a total of six problems with at least **two** from **Section CM**, **two** from **Section EM**, and **one** from **Section SP**.

Do each problem on its own sheet (or sheets) of paper and write only on one side of the page. Do not forget to **write the problem identifier (letters and number)** on each page you turn in. Also, turn in only those problems you want graded (**Do NOT submit for grading more than 6 problems altogether**). Finally, write your panther ID on each page at the top left-hand corner and the question identifier on each page. **DO NOT WRITE your name** anywhere on anything you turn in.

You may use a calculator and a math handbook as needed.

Section: Classical Mechanics

CM1: Two particles of mass m_1 and m_2 slide freely on a horizontal frictionless track and are connected by a spring with a force constant k. Derive the Lagrange equations of motion and find the oscillation frequency.

CM2: A particle of mass m is constrained to move on a frictionless circular hoop of radius *a* fixed in a vertical plane that rotates about its vertical symmetry axis with constant angular speed ω .

- a) Find the equations of motion
- b) Show that if ω is greater than a critical value ω_0 , there can be a solution in which the particle remains stationary on the loop at a point other than the bottom. Find the value of ω_0 .

CM3: A particle travels from position (x_1, y_1, z_1) to (x_2, y_2, z_2) during a (very short) time interval $\Delta t = t_2 - t_1$. The infinitesimal displacement vector for this particle in cylindrical coordinates is given by $d\hat{s} = dr\hat{r} + rd\phi\hat{\phi} + dz\hat{z}$

a) The cylindrical unit vectors $(\hat{r}, \hat{\phi}, \hat{z})$ are written in terms of cylindrical coordinates and the Cartesian unit vectors as $(\hat{\iota}, \hat{j}, \hat{k})$ and they are related by:

$$\hat{r} = \cos \phi \,\hat{\iota} + \sin \phi \,\hat{j}$$
$$\hat{\phi} = -\sin \phi \,\hat{\iota} + \cos \phi \,\hat{j}$$
$$\hat{z} = \hat{k}$$

determine the time rate of change (derivative with respect to time) of the cylindrical unit vectors (*ie.*, $\dot{\hat{r}}$, $\dot{\hat{\phi}}$ and $\dot{\hat{z}}$).

- b) Determine the velocity vector \vec{v} of this particle in cylindrical coordinates.
- c) Determine the acceleration vector \vec{a} of this particle in cylindrical coordinates.

CM4: A speedboat is at the equator and travels at a speed of 100 m/s. Find the apparent relative change in gravity $\left(\frac{\Delta g}{g_0}\right)$ for a boat traveling in all four directions:

- a) straight east
- b) straight west
- c) straight north
- d) straight south

Note that there will potentially be contributions from both the centrifugal and Coriolis terms. Take the radius of the Earth to be $R_E = 6378$ km and use $g_0 = 9.81$ m/s².

ψω

а

hoor

y

Section: Electricity and Magnetism

EM1: A sphere of radius *a*, has a volume charge density $\rho = Ar^2$ where *A* is a constant. It rotates about a diameter coinciding with the z-axis with constant angular velocity, ω . What is its magnetic dipole moment?

EM2: We consider the setup in the figure below. We have two infinite wires perpendicular to the plane of this sheet of paper, each with uniform linear charge density λ . The distance between the wires is d. We also have a positive point charge at a distance "a" along the perpendicular bisector of the line connecting the two wires. This point charge has mass *m*, charge *q* > 0 and an initial velocity v_0 along the perpendicular bisector towards the wires.

- a) What is the magnitude and direction of the electrical force on the point charge as a function of the distance to the line connecting the two wires?
- b) What is the work done by the electrical forces on the point charge as a function of the distance to the line connecting the two wires, starting from its initial position?
- c) How large should v_0 minimally be so that the point charge passes the two wires?

EM3: For the system of 3-point charges shown in the figure below, determine the monopole moment, the dipole moment, and all components of the quadrupole moment tensor, relative to the origin.

Section: Statistical Physics & Thermodynamics

SP1: The thermodynamic properties of any system are completely given by its equation of state (EOS) and its internal energy function. The EOS of a certain gas is given as (P + b)V = RT, and its internal energy: $U = aT + bV + U_0$, where a, b, U_0 , and R are constants.

- a) Using the First Law: $\delta Q = dU + PdV$, calculate C_V , the heat capacity at constant volume.
- b) Again, use the First Law: $\delta Q = dU + PdV$ to calculate the heat capacity at constant pressure, C_P , and show that $C_P C_V$, is the constant *R*.
- c) When combined with the Second Law ($\delta Q = TdS$), the First Law can be written in a differential form: TdS = dU + PdV. Prove that the internal energy function given above represents a real thermodynamic system. (*Hint: show that* $\left(\frac{\partial U}{\partial V}\right)_T$ can be obtained directly from the EOS and it equals the constant b).

SP2: The free-energy F for an ideal Fermi-Dirac gas is given by

$$F = -kT lnZ = -kT \left[\alpha N + \Sigma_r \ln(1 + e^{-(\alpha + \beta \epsilon_r)}) \right]$$

Using this expression, express F in terms of summations over \bar{n}_r (the average number of particles in states *r*), the temperature *T*, and the parameter α .