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Classical Physics 
Ph.D. Qualifying Exam 2025 

Department of Physics at FIU 
 
 
 
Instructions: There are nine problems on this exam.  Three on Mechanics (CM), four on 
Electricity and Magnetism (EM), and two on Statistical Physics and Thermodynamics 
(SP).  You must attempt a total of six problems with at least two from Section CM, two 
from Section EM, and one from Section SP.   
 
Do each problem on its own sheet (or sheets) of paper and write only on one side of the 
page. Do not forget to write the problem identifier (letters and numbers) on each 
page you turn in. Also, turn in only those problems you want to have graded (Do NOT 
submit for grading more than 6 problems altogether). Finally, make sure the pages 
you turn in have the arbitrary ID (AID) assigned to you by the proctor on each page at the 
top left-hand corner along with the question identifier. DO NOT WRITE your name 
anywhere on anything you turn in.  
 
You may use a calculator and a math handbook as needed. 
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Section: Classical Mechanics 
 
CM1: A block with mass m is attached to two springs with spring force constants k1 and 
k2 as shown in the figure to the right.  The block is displaced 
from equilibrium and is free to oscillate from left to right.  
Assume the surface is frictionless. 
 

a. Use Newton’s 2nd Law to write the equations of motion (i.e., 𝑥̈𝑥, 𝑦̈𝑦) for the 
mass. To receive full credit, you must draw a free-body diagram.  Be sure to 
include a coordinate system and clearly label all forces acting on the block.  What 
is the position as a function of time for the mass 𝑥𝑥(𝑡𝑡). 

b. Using the horizontal equation of motion from in part (a), determine the natural angular 
frequency 𝜔𝜔0 , the frequency f, and the period of motion 𝜏𝜏 for this oscillator in terms 
of the mass of the block m and spring constants k1 and k2.   

c. Show that 𝑥𝑥(𝑡𝑡) = 𝐴𝐴 cos(𝜔𝜔0𝑡𝑡 + 𝜙𝜙) is a possible solution to the equation of motion 
found in part (a). 

d. Using the solution in part (c), write an equation for the kinetic and potential energies.  
Show that the total energy is always a constant in time.  Discuss when and where the 
kinetic and potential energies are a maximum. 

 
CM2: In the year 2400, humans have colonized a distant planet named Auroro. Due to the 
planet's harsh surface conditions, the preferred mode of transportation is via gravity 
trains—underground railways that follow straight-line paths between two arbitrary 
points on the surface (from point A to point B). The tunnels do not necessarily pass 
through the planet’s center. Given that the planet’s gravitational acceleration at the 
surface g0 = 10.0 m/s2 , its radius to be 𝑅𝑅 = 10,000 m, and spherical and of uniform 
mass density. Assume the mass of the train is 𝑚𝑚.   

a. Determine the magnitude of the gravitational acceleration as a function of the 
radial distance 𝑟𝑟, g(𝑟𝑟), from the center of the planet, for 𝑟𝑟 ∈ [0,∞],  and sketch 
g(𝑟𝑟) showing all essential information. 

b. Choose appropriate generalized coordinate(s), and derive the Lagrangian and the 
corresponding equation of motion for the train traveling along the tunnel. 

c. Estimate the travel time (in minutes, to two significant digits) it would take a train 
to move from point A to point B. Assume the train starts from rest and travels 
frictionlessly along the tunnel under the influence of gravity only.  

 
CM3: A point particle of mass m is constrained to move on a sphere of radius R and is subject 
to a potential 

𝑉𝑉(𝜃𝜃) =
1
2
𝑉𝑉0 cos2 𝜃𝜃 ,   where 𝑉𝑉0 > 0. 

 
a. Construct the Lagrangian for the point particle and find the constant(s) 

of the motion (i.e., the conserved quantities). 
b. Determine Lagrange’s equations of motion for this point particle. 
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Section: Electricity and Magnetism 
 

EM1: A long cylindrical tube of radius 𝑠𝑠 = 𝑎𝑎 is maintained at a constant, 𝜙𝜙  dependent 
potential,   

𝑉𝑉(𝜙𝜙) = 𝑉𝑉0 cos2 𝜙𝜙. 
 
The region inside the tube is otherwise empty of charge.  
 

a. Find the potential 𝑉𝑉(𝑠𝑠,𝜙𝜙) inside and outside the tube. 
b. Determine the electric field inside the tube.  
c. Find the electric field outside the tube and the charge distribution 𝜎𝜎(𝑎𝑎,𝜙𝜙) on the 

surface of the tube.  

   In cylindrical coordinates a solution to Laplace’s equation is:  

𝑉𝑉(𝑠𝑠,𝜙𝜙) = 𝐴𝐴0 + 𝐵𝐵0 ln 𝑠𝑠 + �𝑠𝑠𝑛𝑛
∞

𝑛𝑛=1

(𝐴𝐴𝑛𝑛 cos𝑛𝑛𝑛𝑛 + 𝐵𝐵𝑛𝑛 sin𝑛𝑛𝑛𝑛) + 𝑠𝑠−𝑛𝑛(𝐶𝐶𝑛𝑛 cos𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛 sin𝑛𝑛𝑛𝑛) 

 
EM2:   

a. Start with Maxwell equations in vacuum in the absence of electrical charges  or 
current densities, derive the wave equation for both the electric and magnetic 
fields. 

b. Prove that solutions of these wave equations which only depend on one spatial 
coordinate (for example 𝑧𝑧 ) are plane wave solutions i.e., 𝐄𝐄(𝒓𝒓, 𝑡𝑡) = 𝒇𝒇(𝑧𝑧 ±
𝑐𝑐𝑐𝑐),𝐁𝐁(𝒓𝒓, 𝑡𝑡) = 𝒈𝒈(𝑧𝑧 ± 𝑐𝑐𝑐𝑐)  where 𝑐𝑐  is a constant and the functions 𝑓𝑓,𝑔𝑔  are 
completely general. (Note: showing that they satisfy the wave equation is not 
sufficient) 

c. Prove that for plane waves propagating in the z-direction the electric and 
magnetic fields 𝐄𝐄,𝐁𝐁 are perpendicular to the z-direction and each other. 

d. Consider a monochromatic (single frequency/wavelength) EM plane wave 
polarization linearly along the y-axis. This wave is superimposed on a second 
monochromatic EM plane wave also polarization linearly along the y-axis but 
traveling in the +𝑥𝑥 direction. Both waves have the same angular frequency 𝜔𝜔 =
 2𝜋𝜋𝜋𝜋, but are 180 degrees out of phase at the origin, and have the same amplitude. 

i. Write down the expression for the total electric field. 
ii. What is the expression for the total magnetic field 

iii. At t = 0, where is the magnetic field zero? 
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Section: Electricity and Magnetism 
 
 

EM3: An infinite slab of magnetic material oriented parallel to the xy-plane but is of finite 
thickness of 2𝑑𝑑. The slab is made of linear material with permeability μ. The slab is placed 
in a uniform external field 𝐁𝐁 = 𝐵𝐵0𝒙𝒙� 
 

a. Show why the B field outside the infinite slab is unaffected by the induced currents 
in the material. And determine the total magnetic field everywhere (direction and 
magnitude).  

b. Determine the direction and magnitude of the any bound magnetization currents 
in the slab. 

c. Determine the force density (force per unit of area) on one of the edges of the slab 
caused by the surface currents interacting with the combined external and 
induced magnetic fields. How would the resulting force density differ with 
material that is either paramagnetic or diamagnetic? 

 
 
 
EM4: Consider three point charges separated by 𝑑𝑑 as shown in the figure below. The charges are 
arranged so that a charge −2𝑞𝑞 is aligned with the z-axis while the two other charges +𝑞𝑞  are 
located 1200 to the right and left so that the tripole system is on the y-z  plane. Consider the 
electric potential at some point 𝒓𝒓 far from the origin where that is 𝑟𝑟 ≫ 𝑑𝑑.    
 

a. Show that the monopole term vanishes.   
b. With the tri-charge system centered at the origin and aligned along the y-z plane, find 

the dipole 𝑉𝑉(𝐫𝐫)𝑑𝑑𝑑𝑑𝑑𝑑, and quaropole 𝑉𝑉(𝐫𝐫)𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 , terms of the electric potential. 
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Section:  Statistical Physics & Thermodynamics 
 
 
SP1:  A particle has the energy level scheme:  
 

𝜖𝜖3 ______
𝜖𝜖2 ______
𝜖𝜖1 ______

 

 
a. In the limit of 𝑇𝑇 → 0 what is the average energy 〈𝐸𝐸〉 and free energy 𝐹𝐹 of the 

particle where 𝐹𝐹 = −𝑘𝑘𝑘𝑘 ln𝑍𝑍. 
b. In the limit of 𝑇𝑇 → ∞ what is the average energy 〈𝐸𝐸〉 and free energy 𝐹𝐹 of the 

particle where 𝐹𝐹 = −𝑘𝑘𝑘𝑘 ln𝑍𝑍. 
 
SP2: Let an ideal gas with 𝑁𝑁  elements be such that each element has 𝑓𝑓  degrees of 
freedom. You can assume the idea gas law 𝑃𝑃𝑃𝑃 =  𝑁𝑁𝑁𝑁𝑁𝑁 and you can also assume the total 
internal energy of the ideal gas is given by 𝑈𝑈 = 𝑁𝑁 �𝑓𝑓

2
� 𝑘𝑘𝑘𝑘. We have denoted the pressure 

by 𝑃𝑃,  volume by 𝑉𝑉, and the temperature by 𝑇𝑇. The Boltzmann’s constant is denoted by 𝑘𝑘. 
 
This ideal gas undergoes an isothermal expansion from (𝑃𝑃1,𝑉𝑉1) to (𝑃𝑃2,𝑉𝑉2) at 𝑇𝑇ℎ. The gas 
then undergoes adiabatic expansion from, (𝑃𝑃2,𝑉𝑉2) to (𝑃𝑃3,𝑉𝑉3)  and the new lower 
temperature is 𝑇𝑇𝑐𝑐 . The gas then undergoes isothermal compression from 
(𝑃𝑃3,𝑉𝑉3) to (𝑃𝑃4,𝑉𝑉4) . Finally, the cycle is closed by an adiabatic compression from 
(𝑃𝑃4,𝑉𝑉4) to (𝑃𝑃1,𝑉𝑉1). 
 

a. Plot the full cycle in a (𝑃𝑃,𝑉𝑉) diagram. Your axes have to be labelled, and the plot 
should label isothermal and adiabatic curves. It should also label 𝑇𝑇ℎ and 𝑇𝑇𝑐𝑐. 
 

b. Prove that 𝑃𝑃𝑉𝑉𝛾𝛾 remains a constant along an adiabatic process where 𝛾𝛾 = 𝑓𝑓
𝑓𝑓+2

. 
 

c. Prove that  
𝑉𝑉1𝑉𝑉3 = 𝑉𝑉2𝑉𝑉4;        𝑃𝑃1𝑃𝑃3 = 𝑃𝑃2𝑃𝑃4. 

 
d. Derive expressions for 𝑄𝑄, the heat into the gas, 𝑊𝑊 the work done on the gas and 

Δ𝑈𝑈, the change in internal energy of the gas for all the four segments. You have to 
derive all expressions, and the results can only have 𝑓𝑓,𝑁𝑁,𝑇𝑇𝑐𝑐,𝑇𝑇ℎ,𝑉𝑉1,𝑉𝑉2 and 𝑘𝑘. 

e. Provide a physical explanation for this process. No points will be awarded for 
guesses. 

 
 

 


