
RESEARCH ARTICLE

The Influence of Host Plant Extrafloral
Nectaries on Multitrophic Interactions: An
Experimental Investigation
Suzanne Koptur1*, Ian M. Jones1, Jorge E. Peña2

1 Department of Biological Sciences, Florida International University, Miami, Florida, United States of
America, 2 Tropical Research and Education Center, University of Florida, Homestead, Florida, United
States of America

* kopturs@fiu.edu

Abstract
A field experiment was conducted with outplantings of the native perennial shrub Senna
mexicana var. chapmanii in a semi-natural area adjacent to native pine rockland habitat in

southern Florida. The presence of ants and the availability of extrafloral nectar were manip-

ulated in a stratified random design. Insect communities were monitored and recorded over

a period of six months with a view to addressing three main questions. Do ants provide

biotic defense against key herbivores on S. chapmanii? Is the presence of ants on S. chap-
maniimediated by EFN? Finally, are there ecological costs associated with the presence of

ants on S. chapmanii, such as a reduction in alternative predator or parasitoid numbers?

Herbivores on S. chapmanii included immature stages of three pierid butterflies, and adult

weevils. Eight species of ants were associated with the plants, and other predators included

spiders, ladybugs, wasps, and hemipterans. Parasitic, haemolymph-sucking midges (Cera-

topogonidae) and parasitoid flies were also associated with the caterpillar herbivores, and

possibly the extrafloral nectaries of the plants. The presence of ants did not appear to influ-

ence oviposition by butterflies, as numbers of lepidopterans of all developmental stages did

not differ among treatments. Significantly more late instar caterpillars, however, were

observed on plants with ants excluded, indicating that ants remove small caterpillars from

plants. Substantially more alternative predators (spiders, ladybugs, and wasps) were

observed on plants with ants excluded. Rates of parasitization did not differ among the treat-

ments, but there were substantially fewer caterpillars succumbing to virus among those col-

lected from control plants.

We provide a rare look at facultative ant-plant mutualisms in the context of the many

other interactions with which they overlap. We conclude that ants provide some biotic

defense against herbivores on S. chapmanii, and plants benefit overall from the presence of

ants, despite negative impacts on non-ant predators.
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Introduction
Extrafloral nectaries (EFNs) have been reported in 93 plant families and 332 genera [1], and
may be found on almost any vegetative or reproductive plant structure [1, 2, 3, 4]. While extra-
floral nectar (EFN) may be consumed by a broad range of arthropods, its discovery by ants is
thought to be of greatest importance to plant defense [1, 5, 6]. While defending their resource,
many ant species show territorial aggressiveness towards, or even prey on other insects that
they encounter [1].

Since Thomas Belt first hypothesized the mutualism between plants and defensive ants [7],
many studies have supported ants as biotic defenders of plants [6, 8, 9, 10]. Ant-plants may be
placed into two categories based on their defensive strategy. Myrmecophytic plants provide
nesting sites and are permanently occupied by specialized ant species, while myrmecophylic
plants provide unspecialized food rewards, most commonly extrafloral nectar (EFN) or honey-
dew (through associations with honeydew producing hemipterans), and foster only facultative
interactions with ants. While the defensive role of ants on myrmecophytic plants is well sup-
ported [8, 9, 10], the defensive benefits of EFN attracted ants have been empirically demon-
strated only relatively rarely [11, 12, 13, 14]. Indeed, several studies of EFN mediated ant-plant
interactions have observed neutral or even negative effects on plant fitness [15, 16, 17]. In some
cases the chemical composition of EFN appears to be tailored to attract defensive ants, and dis-
courage exploiters [18]. Many facultative mutualisms between ants and EFN producing plants,
however, offer low levels of species specificity and nectar is, therefore, available to be exploited
by a host of arthropods which may confer no benefits to the plant (nectar thieves), and may
even deter ants [19]. For example, 14 families of Diptera and 5 families of wasps have been
observed at the EFNs of Lima beans alone [20]. The importance of EFN on the biology of non-
ant consumers, however, has rarely been studied [21].

Ants, themselves, vary in their defensive qualities [9, 22, 23], and even the most effective ant
bodyguards may not be exclusively beneficial for plants [24]. Mutualisms between plants and
ants do not occur in isolation, but within a complex web of biotic interactions. In the cactus
Ferocactus wislizeni, for example, plants defended by the most aggressive ants, Solenopsis
xyloni, suffer reduced herbivory and produce more flowers. Those flowers, however, receive
fewer and shorter visits from pollinators, deterred by the same ferocious ants [24]. Other stud-
ies have also observed that pollinators recognize the danger posed by ants [25, 26]. Assunção
et al. [26] placed plastic ants on the petals of Heteropterys pteropetala. Flowers with plastic ants
produced significantly less fruit than control flowers. Aggressive ants have also been observed
to reduce the numbers of other beneficial insects, such as predators and parasitoids, on EFN
bearing plants [6, 22]. In the EFN bearing tree, Qualea multiflora, both ants and spiders reduce
herbivory rates, and an interaction effect has been observed whereby the best protected plants
are those that harbor both ants and spiders. In many cases, however, ants outcompete spiders,
with detrimental effects on plant defense [27].

Conflict between mutualistic guilds (bodyguards, pollinators, parasitoids) represents an
important and understudied ecological cost of indirect plant defenses, and may be most preva-
lent in generalized systems where there is greater variation in partner quality and the relative
importance of each mutualism. If we hope to understand the ecological role of EFN, along with
the costs and benefits of ant-plant mutualisms, we must consider the whole network of interac-
tions in which they exist. Ant-plant associations have been described as keystone interactions
with the potential to dramatically alter the structure of arthropod communities [6]. The tempo-
ral dynamics of such mutualisms, however, and the balance of costs and benefits received by
the plant, have rarely been studied in the context of the community [28, 29, 21].
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Senna is a relatively large genus (300–350 species) of Caesalpinoid legumes, and one of the
three richest genera in terms of the number of EFN bearing species, along with Passiflora and
Inga [30]. The diversification of Senna has been attributed to the evolution of EFNs, facilitating
interactions with opportunistic ants, and the exploitation of newly arising ecological niches
[30]. Although the ecology of EFNs in Senna is not well understood, there have been a number
of studies on EFN mediated interactions in Senna and closely related taxa.

In the present study we observed and recorded insect activity in Senna mexicana var. chap-
manii (hereafter referred to as Senna chapmanii) over a period of six months, and compiled a
large database of species occurring on our study plants. We examined the role of EFN in medi-
ating ant-plant interactions in S. chapmanii, as well as the effects of ants on predator and herbi-
vore numbers. Additionally, we investigated how the presence of ants affects the rate of
parasitization in S. chapmanii’s key herbivores, the Sulphur butterflies. Ant protection of cater-
pillars against parasitoids has been observed several times through the experimental exclusion
of ants [31, 32]. In one such exclusion experiment, parasitization by tachinid flies and braconid
wasps, resulted in 78% mortality in Hemiargus isola (Lepidotera: Lycaenidae) larvae, almost
twice that observed in the presence of tending ants [32].

In this study, 60 seedlings of S. chapmanii were planted in semi-natural growing conditions.
The presence of ants and the availability of EFN were manipulated to test three major hypothe-
ses. First, we predicted that ants on S. chapmanii would provide defense against herbivores
such as pierid butterflies. Secondly, we hypothesized that the presence of ants would be medi-
ated by the availability of EFN. Finally, we predicted that, despite their defensive benefits, the
presence of ants would come at some ecological cost to S. chapmanii plants, specifically, a
reduction in the numbers of other predatory insects, or the rate of herbivore parasitization.

Methods
Seeds for plants cultivated for our experiment were collected from Camp Owaissa Bauer under
Research Permit # 0021 to SK, Natural Areas Management Miami-Dade County Park and
Recreation Department. The experiment was conducted on the grounds of the University of
Florida's Tropical Research Experiment Center (UF-TREC: 25°30’27.52”N, 8°30’13.67”W; ele-
vation 2.4 m) with permission as JEP was on the faculty and SK an official Research Associate
of UF.

Study site
The experiment was carried out at UF-TREC in Homestead, Florida. The regional climate is
classified as subtropical, with average annual temperatures fluctuating between 3.2–24.8°C in
January and 22.7–32.4°C in July. The mean annual precipitation is 1496 mm. The site elevation
is close to sea level, and consists of flat calcareous limestone rocklands that have been rock-plo-
wed for agriculture. We utilized a 2 acre restoration area within the site. The restoration area
was a rockland hammock, previously overgrown with exotic pest plants, that had been mostly
cleared of all vegetation except for some large native trees in the center and on a few edges.
Within 5 m of the western edge there is a stand of pine rockland habitat, a protected natural
area.

Study species
SennaMiller (Fabaceae: Caesalpinoideae), formerly included in the genus Cassia, is a genus of
300–340 species, of which 80% occur in the NewWorld [33]. Senna spp. are mostly woody
perennials with parapinnate leaves, some bearing foliar nectaries between the lowest pair of
opposite leaflets (varying among species) [34]. Senna mexicana (Jacq.) H.S. Irwin & Barneby
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var. chapmanii (Isely) H.S.Irwin & Barneby is a native species of southern Florida, and is state-
listed as threatened (Atlas of Florida Plants), occurring only in Miami-Dade and Monroe coun-
ties, as well as in the Bahamas and Cuba. This species grows in pine rockland habitat and rock-
land hammock edges as an upright or sprawling subshrub, up to 1.2 m in height, spreading
broader than tall. The bright, showy, yellow flowers (ca. 2 cm diameter) offer no nectar to floral
visitors, and are usually visited by bees collecting pollen by ‘buzzing’ the anthers [35, 36]. Extra-
floral nectaries, however, occur on the pedicels of flowers in the inflorescences, as well as
throughout the foliage between basal leaflets.

Experimental design
Senna chapmanii plants were grown in a greenhouse at Florida International University, from
seed collected from the pine rockland at Camp Owaissa Bauer in Homestead (under Research
Permit # 0021 to SK, Natural Areas Management Miami-Dade County Park and Recreation
Department). After 3 months, sixty plants were transplanted into the experimental site on the
grounds of the University of Florida Tropical Research Experiment Station, in an area of
approximately 8000m2. Plants were installed in an evenly spaced array, over the open areas not
occupied by dense vegetation. Each plant was at least 4m from its nearest neighbor. Treatments
were assigned systematically to ensure even distribution of treatments across the site. Plants
were mulched with wood chips, and watered for two months until they were established.

The experiment consisted of four treatments, in which the presence of ants and the avail-
ability of EFN were manipulated. The two independent variables were ants (present or
excluded) and EFN (available or unavailable). The sixty plants were randomly assigned to one
of four treatments as follows: 1) Ants removed, and a sticky resin (Tanglefoot™) applied to the
base of branches to prevent the transit of ants and other crawling insects; this treatment is des-
ignated TF. 2) Ants present: ants removed manually to control for the effects of removal, such
as shaking of branches, but no tanglefoot applied, so their return was not prevented; this is the
control designated C. 3) Nail polish (Sally Hansen “Hard as Nails”) applied to all nectaries on
the plant to reduce nectar available to all visitors; this treatment is designated NP. 4) Nail polish
dabbed on the back of each leaf, to test for its potential repellent effects; this treatment is desig-
nated NPC. Nylon nail polish effectively seals the nectaries and eliminates nectar production
[37, 14] without damaging plant tissues on this species and others with fairly sturdy leaves. The
assigned treatment was applied to three branches of each plant, and reapplied weekly through-
out the course of the experiment. The arthropod censuses and collections were made from the
selected branches. Though originally there were 15 plants in each treatment, final sample sizes
of plants monitored were TF = 12, C = 15, NP = 12, and NPC = 11.

Plants were transplanted in March 2003, the cooler dry season in south Florida, so irrigation
was needed to aid their establishment until the summer rains came in late May. Plants were all
similar in size initially, but some grew taller and others broader, depending on their genotype.
We chose branches that were held upright and did not touch the ground, and trimmed overlap-
ping branches to eliminate pathways for crawling insects to access treatment branches. Obser-
vations began in the fall rainy season, September 2003, and exclusion experiments started in
October 2003. The experiment continued through February 2004, a period of six months, span-
ning both the wet and dry season (from December onward). In nature, plants flower and fruit
year round, though flowering is greater from November through May (personal observations).

Data collection
Throughout the field season a weekly census was conducted for each plant during the morning
hours (dawn until mid-day), always with sunny or partly cloudy weather, during which insect
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numbers were counted, and their behaviors monitored, on the three target branches. Predatory
arthropods such as ants, spiders, wasps, bugs, ladybugs and flies, were noted along with
whether they visited nectaries, removed herbivores, or fed on other insects. Vouchers were col-
lected where species determination was necessary. Herbivores on the plants were also recorded
(leaf-chewing weevils, and larvae of pierid butterflies and tortricid moths), but only the larvae
of pierid butterflies were intensively sampled. Numbers of small larvae (1st and 2nd instars)
were recorded, while mature (3rd, 4th and 5th instar) caterpillars were recorded, collected, and
reared to glean information on rates of parasitization and disease. The larvae of tortricid moths
were sporadically collected and reared for information on their species identity and parasitiza-
tion. For each type of arthropod we counted the number of individuals at each census, except
for ants, flies, and weevils, where only the presence or absence of each species was noted.

Caterpillars were maintained individually in the laboratory, in 1-gallon plastic bags, and fed
on leaves until they died or pupated. Caterpillars/Pupae were kept in the bags until the emer-
gence of adult butterflies or, in the case of dead or morbid individuals, until the emergence of
parasitoids (such individuals were placed in plastic Falcon ™ tubes with loosened caps). Emerg-
ing butterflies or parasitoids could then be identified.

For each pierid caterpillar collected, we recorded whether it survived to adulthood or died.
For those caterpillars that died, it was determined if their death was a result of parasitization
(where a parasitoid was seen to emerge) or from a virus. The most common parasitoid, a tachi-
nid fly, usually emerged as a larva from the pierid butterfly chrysalis, and pupated in the con-
tainer. We later found that some of these flies pupated within the chrysalis, and died while
emerging from both pupae cases. Some fly larvae presumably died before emergence, and were
not detected. By this stage specimens were often desiccated to such an extent as to prevent reli-
able analysis and, therefore, it was not always possible to determine the exact cause of death. In
such cases we assigned the category “maybe parasitized”. Virus infected caterpillars exhibited
discoloration and turned black shortly after death; virus infected pupae neither eclosed a but-
terfly nor a parasitoid, but turned either black or a mosaic of colors. Dead specimens (larvae
and pupae, presumed to be killed by virus) collected over the study were later sent to L. Solter
(Illinois Natural History Survey) for examination, to determine if there was evidence of virus
or microsporidia. This turned out to be impossible to determine as our specimens, left in tubes
at room temperature, had acquired fungi and other decomposers that interfered with her
observations; no one common pathogenic agent could be identified from these specimens.

Data analysis
We summed the occurrences of all types of insects on each plant (actual counts for most types;
only presence/absence for ants, flies, and weevils) over the course of the experiment. We used
sums rather than averages as it was unlikely that individual insects would be on the same plant
(except for caterpillars, which were removed at the third instar and later for rearing). Where
actual numbers were recorded, counts were compared among treatments using Univariate
Analysis of Variance. Where only presence/absence was recorded, insect occurrence was com-
pared using Contingency Tables and the Kruskal-Wallis test (SPSS version 11).

Analyses were performed with both actual data of occurrences of the various arthropod
groups and square-root transformed data, which always gave the same results, so we report the
results with the actual data. Some plants died during the course of the experiment, succumbing
to fungal blight; data from all plants that lived for at least two months were included. Post-hoc
tests for between treatment comparisons were either Tukeys HSD (for equal variance) or Dun-
net’s C or Games-Howell (depending on the sample size). Caterpillar rearing data were ana-
lyzed using contingency tables.
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Results
In all the analyses we sought to detect effects of the treatments on the abundance of the various
arthropods associated with Senna mexicana var. chapmanii. We will consider each of the
groups in turn, starting with the ants, continuing with other potential predators, and then the
herbivores.

Ants
Eight species of ants were encountered on experimental plants (Table 1). Plants treated with
Tanglefoot had the lowest numbers of ants of most species (lowest mean ranks in the Kruskal
Wallis test), but only for one species of ant (Brachymyrmex obscurior; Kruskal Wallis X2

3 = 9.2,
p = .026) was the difference significant (Fig 1). Fire ants (Solenopsis invicta) did not differ sig-
nificantly among treatments (X2

3 = 2.822, p = 0.42) (Fig 1), and carpenter ants (Camponotus)
were marginally significant when the three observed species were combined (X2

3 = 7.23,
p = 0.065). Overall, the desired effect of ant exclusion was obtained: all ant species combined
were substantially less frequent on the Tanglefoot treated plants than on all the other treat-
ments, which were not different from each other (Fig 1).

Of the 60 plants in the study, 18 were colonized by fire ant nests at their base during the
course of the experiment: 9 of the NPC plants; 5 of the NP plants; and 2 each of the TF and C
plants. During the course of the experiment, some of the plants died, succumbing to a type of
blight, wilting one week, dead the next week. One or two of each group was lost in this way,
reducing the sample size by the end of the study. Only one of the plants with a nest at its base
died.

Other Predators
Predators of several orders (Hymenoptera, Hemiptera, Coleoptera) and many families were
recorded on the Senna chapmanii plants in this experiment (Table 1; Fig 2). Several non-ant
predators were substantially more abundant on plants with ants excluded: ladybugs (Cocinelli-
dae) (F3,47 = 3.4, p = 0.025), spiders (Thomisidae) (F3,47 = 2.998, p = 0.040), and wasps (Vespi-
dae) showed statistically significant differences (F3,47 = 2.82, p = 0.049) among treatments and
were most abundant on Tanglefoot treated plants (Fig 2). Hemiptera predators (F3,47 = 1.56,
p = 0.212) and sucking flies (Ceratopogonidae) (F3,47 = 1.999, p = 0.127) did not differ signifi-
cantly among treatments.

Herbivores
Three pierid butterfly species occurred on Senna mexicana var. chapmanii: Abaeis nicippe
(Cramer) (the sleepy orange), Phoebis philea (L.) (the orange-barred sulfur), and Phoebis sen-
nae (L.) (the cloudless sulfur). Abaeis nicippe were the most numerous, followed by P. sennae,
while P. philea were relatively rare (Fig 3). Abaeis nicippe larvae consumed only foliage,
whereas the larvae of both Phoebis species consumed either leaves or flowers. Phoebis larvae
had coloration reflecting the color of the plant organ consumed. Comparing the number of cat-
erpillars collected at 3rd instar and larger for rearing, we can see that for both Phoebis species,
more were found on plants with ants excluded (P. philea X2

3 = 141.24; p< 0.005; P. sennae X2
3

= 78.25; p< 0.005), and this difference was significant also for comparing only ant exclusion
(TF treatment) with the control for both Phoebis species as well (P. philea X2 = 17.82;
p< 0.005; P. sennae X2

3 = 16.6; p< 0.005. This difference between ant-excluded and control
was not evident, however, for Abaeis nicippe (X2 = 0.08; p> 0.5), though overall there was a
significant effect of treatment (X2

3 = 107.22; p< 0.005). When caterpillars of all species
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collected for rearing were combined, there was an even more dramatic difference among treat-
ments (X2

3 = 195.6, p< 0.005) with many more caterpillars discovered, collected, and reared
from plants with ants excluded versus control plants (X2 = 14.0; p< 0.005).

Although all caterpillars were somewhat more numerous on plants with ants excluded
(especially Phoebis sennae), the overall number of Pieridae encountered in weekly censuses (all
species combined, and all stages from early through late instars), did not differ significantly
among plants in different treatments (F3,47 = 1.288, p = 0.29) (Fig 3). Numbers of caterpillars
collected and reared in the lab (3rd instar and greater), however, differed significantly among
treatments (Pearson X2

3 = 34.997, p< .0001), with greater numbers found on plants from
which ants were excluded (the TF treatment; Fig 4).

Several species of tortricid caterpillars (subfamily Phyticinae) were recorded, collected, and
reared, and their numbers did not differ significantly among treatments (F3,47 = 0.591;
p = 0.624; results not shown). Leaf-chewing weevils were also encountered on experimental
plants, including Diaprepes abbreviatus and Pachnaeus litus (Coleoptera: Curculionidae).
Their numbers did not differ significantly among treatments.

Table 1. Arthropods associated with experimental Senna plants.

Order, Family Genus, Species, author Nest location, ecological info, etc

Hymenoptera, Formicidae Brachymyrmex obscurior* Wilson & Taylor Ground (Tschinkel & Hess 1999)

Camponotus floridanus Buckley Decaying wood

Camponotus rasilis* Wheeler Decaying wood

Camponotus sexguttatus* Fabricius twigs

Odontomachus brunneus Deyrup et al. subterranean

Paratrechina longicornis Latreille Tree bark, rotten wood, stones, debris

Pseudomyrmex elongatus Mayr Dead twigs

Pseudomyrmex gracilis* Fabricius Twigs, branches

Solenopsis invicta* Buren ground

Hymenoptera, Halictidae Augochlorella spp. Flower visitor

Augochloropsis anonyma Cockerell Flower visitor

Hymenoptera, Apidae Melissodes communis Cresson Flower visitor

Hymenoptera, Vespidae Polistes major (Beauvois) det. Deyrup 2003 Predator, make caterpillar meatballs

Pachodynerus nasidens Latreille det Wiley 2005 Predator

Hemiptera, Alydidae Hyalymenus longispinus Stål, 1870; det. D. Zisk 2005 ant-mimic nymphs—plant/seed feeders

Hemiptera, Reduviidae Zelus longipes L.–D. Zisk 2005 predator, Assassin bug

Hemiptera, Pentatominae Euschistus sp. det. D. Zisk 2005 predator

Loxa virescens Amyot & Serville predator

Hemiptera, Pyrrhocoridae Dysdercus mimulus Hussey; det. J. Brambilia 2005 Plant feeder

Coleoptera, Cucurlionidae Diaprepes abbreviatus Hussey; det. M.C. Thomas Leaf feeder

Pachnaeus litus Germar Leaf feeder

Coleoptera, Coccinelidae Brachiacantha decora Casey; det. MC Thomas predator

Cycloneda sanguinea Hussey predator

Coelophora inaequalis Fabricius det M.C. Thomas predator

Diomus roseicollis Mulsant predator

Hippodamia convergens Guérin-Méneville predator

Arachnida, Thomisidae Misumenoides formosipes Walckenaer 1837 predator

Table 1—Arthropods on Senna mexicana var. chapmanii plants in experimental plantation, Homestead, FL. Taxonomic information includes order, family,

genus, species, and authority. Ant (Formicidae) species considered exotic are indicated with *. Brief ecological information is also provided for each

documented association.

doi:10.1371/journal.pone.0138157.t001
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Fig 1. Ants on Sennamexicana var. chapmanii (experimental plantation) plants in Homestead, FL.Mean and standard error of numbers summed over
the field season, over all plants, by treatment. Differences among treatments shown by Kruskal-Wallis for presence/absence data. Treatments abbreviated
as C = control, TF = (tanglefoot) ant exclusion, NP = nail polish, NPC = nail polish control. Sample sizes of plants monitored were TF = 12, C = 15, NP = 12,
and NPC = 11).

doi:10.1371/journal.pone.0138157.g001
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Fig 2. Other potential predators on Sennamexicana var. chapmanii (experimental plantation) plants in Homestead, FL.Mean and standard error of
numbers summed over the field season, over all plants, by treatment. Differences among treatments shown by ANOVA for count data. Treatments and
sample sizes the same as in Fig 1.

doi:10.1371/journal.pone.0138157.g002

Extrafloral Nectaries, Ants, and the Associated Arthropod Community

PLOS ONE | DOI:10.1371/journal.pone.0138157 September 22, 2015 9 / 18



Fig 3. Herbivores on Sennamexicana var. chapmanii (experimental plantation) plants in Homestead, FL.Mean and standard error of numbers
summed over the field season, over all plants, by treatment. Differences among treatments shown by ANOVA for count data. Treatments and sample sizes
the same as in Figs 1 and 2.

doi:10.1371/journal.pone.0138157.g003
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Parasitoids
Two species of tachinid flies were reared as parasitoids from the two most common sulfur but-
terfly caterpillars, A. nicippe and P. sennae. One species was positively identified as Lespesia
parviteres (Aldrich &Webber), while the other, a species of Hyphantrophaga (possibly H. sell-
ersi (Sabrosky), could not be identified beyond the genus due to confusion in this taxon.
Though the same flies reared as parasitoids were also observed several times in the field on
plants and on researchers, their numbers were not great enough to warrant analysis. Small flies
observed sucking the haemolymph of sulfur caterpillars were collected and determined by Wil-
liam Grogan to be Forcipomyia (Microhelea) eriophora (Williston) (Ceratopogonideae), a spe-
cies recently observed in the Florida Keys feeding on the Florida leafwing butterfly [38]. Most
of the caterpillars found with the sucking flies died before pupation [14], perhaps from a virus
transmitted by the flies.

Only one wasp (Ichneumonidae) parasitoid individual was reared from the sulfur caterpil-
lars, but this species was never observed in the field, though several other small wasps that
might be parasitoids were observed on plants and at nectaries.

Parasitization and caterpillar success
Parasitization rate determined from caterpillars collected was 13% over all treatments. The rate
did not differ significantly among treatments (Pearson X2

3 = 4.35, p = 0.226; Fig 5).
Viruses were implicated in the death of many caterpillars, despite hygienic rearing protocol.

Over all treatments, 13% of the individuals reared apparently succumbed to virus; this differed
significantly among treatments, with caterpillars from Control plants faring substantially better
than those from all the other treatments (Pearson X2

3 = 8.75, p = 0.033; Fig 5).

Fig 4. Pieridae (3rd instar or higher) collected from field-grown Sennamexicana var. chapmanii, and brought to lab for rearing. Individuals, summed
over the field season over all plants, are separated by species and treatment. n = number of plants monitored. Treatments and sample sizes of plants
monitored the same as in Figs 1, 2 and 3. Pearson X2

3 = 25.5, p < 0.0001.

doi:10.1371/journal.pone.0138157.g004
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Caterpillar success rate in becoming an adult butterfly was 61% over all treatments, and
though not significant (Pearson X2

3 = 7.38, p = 0.06; Fig 5), the best survival was seen in the
caterpillars from Control plants (69% vs. 57–58% in all other groups).

Discussion
Extrafloral nectaries are a way of plants attracting “pugnacious bodyguards” [3] as they subsi-
dize the diet of carnivorous insects [39], forming the basis for protective mutualisms. The out-
come of food-for-protection mutualisms between ants and plants are difficult to predict,
however, as they don’t occur in isolation, but within a complex web of biotic interactions. By
manipulating the presence of ants, and the availability of EFN, we cast some light on the many
interactions mediated by EFN, and the role of ants as a biotic defense in S. chapmanii.

Although the presence of ants has been shown to deter oviposition by lepidopteran herbi-
vores in several studies [4, 11, 40], our results suggest this is not the case in S. chapmanii, as
overall numbers of pierid caterpillars were similar among treatments. Late instar pierid cater-
pillars were significantly less abundant in the presence of ants, however, indicating that ants
defend S. chapmanii plants by removing these key herbivores (Fig 6). A very similar relation-
ship between ants and pierid herbivores has been observed in a closely related species, Senna
occidentalis. Fleet and Young [41] observed that oviposition by two Sulphur butterflies was not
deterred by defensive ants, but that the survival rates of eggs and larvae were reduced. Several
other studies have reported reduced levels of caterpillar infestation in the presence of ants [42,
43]. Sendoya and Oliveira [43] studied these effects at the habitat level (the Brazilian cerrado),

Fig 5. Rates of parasitization, virus death, and adulthood reached by caterpillars by treatment. Sample size is the number of caterpillars collected from
plants (3rd instar and beyond) and reared from plants in each treatment group. Parasitized counts include both definitely and “maybe parasitized” individuals.

doi:10.1371/journal.pone.0138157.g005
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and found that rates of caterpillar infestation were influenced by local variations in ant num-
bers and species, as well as the preference of those ant species for plants producing EFN.

We observed no differences in the incidence of tortricid caterpillars among treatments, and
this was to be expected, as these are concealed feeders and are less likely to be affected by sur-
face patrolling ants. Indeed, the presence of ants may even benefit some concealed feeders by
deterring their enemies [44, 45]. Unfortunately, too few Tortricidae were reared in this study to
determine if that is the case in this system.

The role of ants as plant defenders is well supported, but mainly in myrmecophytic plants
that provide both food and shelter to their ant partners, and engage in specialized obligate
mutualisms (for example, [8]). Senna and relatives, however, represent a large group in which
the ecology of EFN has been relatively well studied, and several species have been observed to
benefit from facultative relationships with ants. Senna occidentalis in Texas receives protection
from fire ants against two of the same sulfur butterflies as in this study, resulting in greater
plant height, number of leaves, and reproductive fitness [41]. In the Brazilian cerrado,

Fig 6. Predators on Senna chapmannii plants—upper left, Polistes majorwasp with Phoebis philea caterpillar; upper right, Polisteswasp damage
to Phoebis sennae chrysalis; lower right, coccinelidBrachiacantha decora adult at extrafloral nectary; lower left, thomisid spiderMisumenoides
formosipes ready for prey.

doi:10.1371/journal.pone.0138157.g006
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Chamaecrista debilis nectaries are visited by ants that decrease herbivory and increase fruit set
[46]. The nectaries of Cassia fasiculata have also been shown to support protective ants that
reduce herbivore damage [47], and increase plant fecundity [48]. Boecklen [49], however,
excluded ants from the same species using two methods (tanglefoot and excising nectaries,
alone and in combination), concluding that the presence of ants was of no benefit to plants as
treatment plants produced as many fruits as did control plants. It remains to be seen in our sys-
tem if ants visiting nectaries enhance plant reproduction.

The application of Tanglefoot™ was effective in excluding ants from treatment branches
over the course of the study. Reducing the availability of EFN using nail polish, however, did
not significantly affect ant activity on the study branches. This was a surprising result, as many
studies have linked ant activity with the availability of EFN [50, 20, 51]. Indeed, Baker-Meio
and Marquis [52] studied several varieties of Chamaecrista desvauxii and found that those vari-
eties with larger nectaries produced more nectar and attracted more ants. During our study,
EFNs in the inflorescences of flowering individuals may have augmented ant activity on nail
polish treated branches, as they were not always covered with nail polish. Additionally, on
large study plants, only the experimental branches were treated, so the availability of EFN on
non-test branches likely accounts for many of the ants attracted to these plants.

Our results demonstrate that when ants are excluded from nectaries in this study system, the
numbers of other predators are significantly increased (Fig 7). The deterrence of other predators
represents an important ecological cost of ant-plant interactions. Torres-Hernandez et al. [22]
also found that predator numbers on Turnera ulmifolia were increased when ants were
excluded, and that these predators provided better defense against herbivores than some ant
species. Spiders have been shown to enhance seed set of Chamaecrista nictitans host plants with
extrafloral nectaries [53], even when ants are ineffective at repelling some herbivores [45]. Ves-
pid wasps visit extrafloral nectaries and are voracious predators (and we observed several mak-
ing “caterpillar meatballs” during the course of the study). Wasps attracted to the extrafloral
nectaries of Turnera ulmifolia have been shown to positively affect plant reproductive output
[54]. Coccinellidae larvae and adults have been observed to visit extrafloral nectaries ([55], and
the present study) and consume a variety of arthropods. Feeding on nectar and honeydew has
even been shown to enhance development and survival these omnivorous “predators” [56].

In this study, neither the presence of ants, nor the availability of EFN, affected the rates of
parasitization in pierid caterpillars. Although several studies have observed ants defending cat-
erpillars from parasitoids [31, 32], these studies involved ant-tended lepidopteran species that
are known to provide ants with sugary resources in return for defense. It has been observed
[James Spencer, personal communication] that sulphur caterpillars at times produce tiny drop-
lets on the tips of setae covering their bodies, but the potential role of this liquid as an ant
reward, or ant-deterrent, has not yet been investigated. We have never observed caterpillar-
tending behavior by ants, but the droplets may play a role in caterpillar protection (presently
under investigation).

A surprising observation was that on control plants, where ant activity was high, fewer cat-
erpillars died from viruses. We also observed that caterpillars collected from these plants had a
higher rate of successful emergence as adults, although the result was not quite significant in
this case. A variety of predators and parasitoids (Coccinellid larvae, tachinid flies, and parasitic
wasps) have been shown to carry viable nuclear polyhedrosis virus [57]. It is possible; therefore,
that the deterrence of predators by ants may explain the low rates of viral infection seen in cat-
erpillars collected from control plants. An alternative explanation is that ants may dispropor-
tionally predate upon virus infected caterpillars, leading to lower rates of virus infection in
reared caterpillars. While we view this explanation as unlikely, future work could determine if
virus infected caterpillars are more or less vulnerable to predation.
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An unanticipated dimension of the study was the discovery of caterpillar-sucking midges
that might have a role in spreading virus and thereby controlling caterpillars. Ceratopogonidae
midges (Forcipomyia (Microhelea) eriophora) were first observed feeding on P. sennae during
this study, and the phenomenon was later observed several times in natural settings. The para-
sitized larvae were collected, and died at higher rates in captivity than is expected in rearings of
this species [14]. It might be that these Ceratopogonidae midges are not as likely to suck cater-
pillars in the presence of ants, but more work is needed to test this, as well as the virus trans-
mission hypothesis [14].

Like many EFN producing plants, S. chapmanii appears to engage in non-specialist faculta-
tive interactions with ants. In this study alone, the EFNs of S. chapmanii were regularly visited
by eight species of ants. In addition to attracting small numbers of workers to defend against
herbivores, some EFN producing plants may also attract ants to nest beneath the plants,
increasing the reliability of defense and potentially providing additional nutrients in the soil
[58, 59]. In this experiment, of the thirty plants with available EFNs, eleven had fire ant nests at
their base. Study plants were mulched to prevent the growth of weeds that might function as
‘ant-bridges’, and this mulch may have contributed to the attraction of nesting ants, however,
this unexpectedly high occurrence of nests surely warrants further investigation. Indeed, the
outcomes of ant-plant mutualisms must ultimately depend more on the dynamics of colonies,

Fig 7. Some players in the tritrophic system—upper left, caterpillar of the orange-barred sulfur butterfly, Phoebis philea, on Senna chapmanii;
upper right, pupa (chrysalis) of P. sennae; lower left, adult P. sennae; lower right: caterpillar studded with sucking flies (virus transmitters?).When
viruses are involved, the pupae do not hatch, but instead turn various colors.

doi:10.1371/journal.pone.0138157.g007
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than the behavior of individual workers, and we are not the first to suggest that future work
might use colonies, rather than workers, as the unit of study [60].

We have previously shown that S. chapmanii plants produce more EFN in response to leaf
damage, and that the same leaf damage elicits increased ant activity on the plants [51].
Although not comprehensive, the present study provides a record of many insects found on S.
chapmanii, and represents a rare effort to describe EFN mediated ant-plant interactions in the
context of the many other interactions around which they occur. We provide strong evidence
that ants remove key herbivores from S. chapmanii, and future work should focus on how ants
affect plant reproductive fitness in this system.
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