EXERCISE SET

Graphing Utility

1-8 Find dy/dx.

1.
$$y = 4x^7$$

2.
$$y = -3x^{12}$$

3.
$$y = 3x^8 + 2x + 1$$

4.
$$y = \frac{1}{2}(x^4 + 7)$$

5.
$$v = \pi^3$$

6.
$$y = \sqrt{2}x + (1/\sqrt{2})$$

7.
$$y = -\frac{1}{3}(x^7 + 2x - 9)$$
 8. $y = \frac{x^2 + 1}{5}$

8.
$$y = \frac{x^2 + 1}{5}$$

9-16 Find f'(x). 顯

9.
$$f(x) = x^{-3} + \frac{1}{x^7}$$
 10. $f(x) = \sqrt{x} + \frac{1}{x}$

10.
$$f(x) = \sqrt{x} + \frac{1}{x}$$

11.
$$f(x) = -3x^{-8} + 2\sqrt{x}$$
 12. $f(x) = 7x^{-6} - 5\sqrt{x}$

12.
$$f(x) = 7x^{-6} - 5\sqrt{x}$$

13.
$$f(x) = x^e + \frac{1}{x\sqrt{10}}$$
 14. $f(x) = \sqrt[3]{\frac{8}{x}}$

14.
$$f(x) = \sqrt[3]{\frac{8}{x}}$$

15.
$$f(x) = (3x^2 + 1)^2$$

16.
$$f(x) = ax^3 + bx^2 + cx + d$$
 (a, b, c, d constant)

17-18 Find y'(1). ■

17.
$$y = 5x^2 - 3x + 1$$

17.
$$y = 5x^2 - 3x + 1$$
 18. $y = \frac{x^{3/2} + 2}{x}$

19-20 Find dx/dt.

19.
$$x = t^2 - t$$

20.
$$x = \frac{t^2 + 1}{3t}$$

21–24 Find $dy/dx|_{x=1}$.

21.
$$y = 1 + x + x^2 + x^3 + x^4 + x^5$$

22.
$$y = \frac{1 + x + x^2 + x^3 + x^4 + x^5 + x^6}{x^3}$$

23.
$$y = (1-x)(1+x)(1+x^2)(1+x^4)$$

24.
$$y = x^{24} + 2x^{12} + 3x^8 + 4x^6$$

25–26 Approximate f'(1) by considering the difference quotient

for values of h near 0, and then find the exact value of f'(1) by differentiating.

25.
$$f(x) = x^3 - 3x + 1$$
 26. $f(x) = \frac{1}{x^2}$

26.
$$f(x) = \frac{1}{x^2}$$

27–28 Use a graphing utility to estimate the value of f'(1) by zooming in on the graph of f, and then compare your estimate to the exact value obtained by differentiating.

27.
$$f(x) = \frac{x^2 + 1}{x}$$

28.
$$f(x) = \frac{x + 2x^{3/2}}{\sqrt{x}}$$

29-32 Find the indicated derivative.

29.
$$\frac{d}{dt}[16t^2]$$

30.
$$\frac{dC}{dr}$$
, where $C = 2\pi r$

31. V'(r), where $V = \pi r^3$ 32. $\frac{d}{d\alpha}[2\alpha^{-1} + \alpha]$

$$32. \ \frac{d}{d\alpha}[2\alpha^{-1} + \alpha]$$

33-36 True-False Determine whether the statement is true or false. Explain your answer.

33. If f and g are differentiable at x = 2, then

$$\frac{d}{dx}[f(x) - 8g(x)]\bigg|_{x=2} = f'(2) - 8g'(2)$$

34. If f(x) is a cubic polynomial, then f'(x) is a quadratic polynomial.

35. If
$$f'(2) = 5$$
, then

$$\frac{d}{dx}[4f(x) + x^3]\bigg|_{x=2} = \frac{d}{dx}[4f(x) + 8]\bigg|_{x=2} = 4f'(2) = 20$$

36. If $f(x) = x^2(x^4 - x)$, then

$$f''(x) = \frac{d}{dx}[x^2] \cdot \frac{d}{dx}[x^4 - x] = 2x(4x^3 - 1)$$

37. A spherical balloon is being inflated.

(a) Find a general formula for the instantaneous rate of change of the volume V with respect to the radius r, given that $V = \frac{4}{3}\pi r^3$.

(b) Find the rate of change of V with respect to r at the instant when the radius is r = 5.

38. Find $\frac{d}{d\lambda} \left[\frac{\lambda \lambda_0 + \lambda^6}{2 - \lambda_0} \right]$ (λ_0 is constant).

39. Find an equation of the tangent line to the graph of y = f(x)at x = -3 if f(-3) = 2 and f'(-3) = 5.

40. Find an equation of the tangent line to the graph of y = f(x)at x = 2 if f(2) = -2 and f'(2) = -1.

41–42 Find d^2y/dx^2 .

41. (a)
$$y = 7x^3 - 5x^2 + x$$
 (b) $y = 12x^2 - 2x + 3$ (c) $y = \frac{x+1}{x}$ (d) $y = (5x^2 - 3)(7x^3)$

(b)
$$y = 12x^2 - 2x + 3$$

(c)
$$y = \frac{x+1}{x}$$

(d)
$$y = (5x^2 - 3)(7x^3 + x)$$

42. (a)
$$y = 4x^7 - 5x^3 + 2x$$
 (b) $y = 3x + 2$ (c) $y = \frac{3x - 2}{5x}$ (d) $y = (x^3 - 5)$

(d)
$$y = 3x + 2$$

(d) $y = (x^3 - 5)(2x + 3)$

43. (a)
$$y = x^{-5} + x^5$$

(b)
$$y = 1/x$$

(c)
$$y = ax^3 + bx + c$$
 (a, b, c constant)

44. (a)
$$y = 5x^2 - 4x + 7$$
 (b) $y = 3x^{-2} + 4x^{-1} + x$

(c)
$$y = ax^4 + bx^2 + c$$
 (a, l)

(c)
$$y = ax^4 + bx^2 + c$$
 (a, b, c constant)

45. Find

(a)
$$f'''(2)$$
, where $f(x) = 3x^2 - 2$

(b)
$$\frac{d^2y}{dx^2}\Big|_{x=1}$$
, where $y = 6x^5 - 4x^2$

(c)
$$\frac{d^4}{dx^4}[x^{-3}]\Big|_{x=1}$$

EXERCISE SET:

Graphing Utility

1-4 Compute the derivative of the given function f(x) by (a) multiplying and then differentiating and (b) using the product rule. Verify that (a) and (b) yield the same result.

1.
$$f(x) = (x+1)(2x-1)$$
 2. $f(x) = (3x^2-1)(x^2+2)$

3.
$$f(x) = (x^2 + 1)(x^2 - 1)$$

4.
$$f(x) = (x+1)(x^2-x+1)$$

5–20 Find f'(x).

5.
$$f(x) = (3x^2 + 6)(2x - \frac{1}{4})$$

6.
$$f(x) = (2 - x - 3x^3)(7 + x^5)$$

7.
$$f(x) = (x^3 + 7x^2 - 8)(2x^{-3} + x^{-4})$$

8.
$$f(x) = \left(\frac{1}{x} + \frac{1}{x^2}\right) (3x^3 + 27)$$

9.
$$f(x) = (x-2)(x^2+2x+4)$$

10.
$$f(x) = (x^2 + x)(x^2 - x)$$

11.
$$f(x) = \frac{3x+4}{x^2+1}$$

12.
$$f(x) = \frac{x-2}{x^4+x+1}$$

13.
$$f(x) = \frac{x^2}{3x - 4}$$

14.
$$f(x) = \frac{2x^2 + 5}{3x - 4}$$

15.
$$f(x) = \frac{(2\sqrt{x}+1)(x-1)}{x+3}$$

16.
$$f(x) = (2\sqrt{x} + 1)\left(\frac{2-x}{x^2 + 3x}\right)$$

17.
$$f(x) = (2x+1)\left(1+\frac{1}{x}\right)(x^{-3}+7)$$

18.
$$f(x) = x^{-5}(x^2 + 2x)(4 - 3x)(2x^9 + 1)$$

19.
$$f(x) = (x^7 + 2x - 3)^3$$
 20. $f(x) = (x^2 + 1)^4$

21-24 Find $dy/dx|_{x=1}$.

21.
$$y = \frac{2x-1}{x+3}$$

22.
$$y = \frac{4x+1}{x^2-5}$$

23.
$$y = \left(\frac{3x+2}{x}\right)(x^{-5}+1)$$
 24. $y = (2x^7 - x^2)\left(\frac{x-1}{x+1}\right)$

24.
$$y = (2x^7 - x^2) \left(\frac{x-1}{x+1}\right)$$

25–26 Use a graphing utility to estimate the value of f'(1) by zooming in on the graph of f, and then compare your estimate to the exact value obtained by differentiating.

25.
$$f(x) = \frac{x}{x^2 + 1}$$

26.
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

25.
$$f(x) = \frac{x}{x^2 + 1}$$
 26. $f(x) = \frac{x^2 - 1}{x^2 + 1}$ **27.** Find $g'(4)$ given that $f(4) = 3$ and $f'(4) = -5$.

(a)
$$g(x) = \sqrt{x} f(x)$$
 (b) $g(x) = \frac{f(x)}{x}$

(b)
$$g(x) = \frac{f(x)}{x}$$

28. Find
$$g'(3)$$
 given that $f(3) = -2$ and $f'(3) = 4$.
(a) $g(x) = 3x^2 - 5f(x)$ (b) $g(x) = \frac{2x+1}{f(x)}$

29. In parts (a)–(d),
$$F(x)$$
 is expressed in terms of $f(x)$ and $g(x)$. Find $F'(2)$ given that $f(2) = -1$, $f'(2) = 4$, $g(2) = 1$, and $g'(2) = -5$.

(a)
$$F(x) = 5f(x) + 2g(x)$$
 (b) $F(x) = f(x) - 3g(x)$

(c)
$$F(x) = f(x)g(x)$$
 (d) $F(x) = f(x)/g(x)$

(d)
$$F(x) = f(x)/g(x)$$

30. Find
$$F'(\pi)$$
 given that $f(\pi) = 10$, $f'(\pi) = -1$, $g(\pi) = -3$, and $g'(\pi) = 2$.

(a)
$$F(x) = 6f(x) - 5g(x)$$
 (b) $F(x) = x(f(x) + g(x))$

(b)
$$F(x) = x(f(x) + g(x))$$

(c)
$$F(x) = 2f(x)g(x)$$

(c)
$$F(x) = 2f(x)g(x)$$
 (d) $F(x) = \frac{f(x)}{4 + g(x)}$

31-36 Find all values of x at which the tangent line to the given curve satisfies the stated property.

31.
$$y = \frac{x^2 - 1}{x + 2}$$
; horizontal **32.** $y = \frac{x^2 + 1}{x - 1}$; horizontal

33.
$$y = \frac{x^2 + 1}{x + 1}$$
; parallel to the line $y = x$

34.
$$y = \frac{x+3}{x+2}$$
; perpendicular to the line $y = x$

35.
$$y = \frac{1}{x + 4}$$
; passes through the origin

36.
$$y = \frac{2x+5}{x+2}$$
; y-intercept 2

FOCUS ON CONCEPTS

- 37. (a) What should it mean to say that two curves intersect at right angles?
 - (b) Show that the curves y = 1/x and y = 1/(2-x)intersect at right angles.
- **38.** Find all values of a such that the curves y = a/(x-1)and $y = x^2 - 2x + 1$ intersect at right angles.
- **39.** Find a general formula for F''(x) if F(x) = x f(x) and f and f' are differentiable at x.
- **40.** Suppose that the function f is differentiable everywhere and F(x) = xf(x).
 - (a) Express F'''(x) in terms of x and derivatives of f.
 - (b) For $n \ge 2$, conjecture a formula for $F^{(n)}(x)$.
- 41. A manufacturer of athletic footwear finds that the sales of their ZipStride brand running shoes is a function f(p) of the selling price p (in dollars) for a pair of shoes. Suppose that f(120) = 9000 pairs of shoes and f'(120) = -60 pairs of shoes per dollar. The revenue that the manufacturer will receive for selling f(p) pairs of shoes at p dollars per pair is $R(p) = p \cdot f(p)$. Find R'(120). What impact would a small increase in price have on the manufacturer's revenue?
- 42. Solve the problem in Exercise 41 under the assumption that f(120) = 9000 and f'(120) = -80.
- 43. Use the quotient rule (Theorem 2.4.2) to derive the formula for the derivative of $f(x) = x^{-n}$, where n is a positive integer.

QUICK CHECK EXERCISES

(See page 174 for answers.)

- 1. Find dy/dx.
 - (a) $y = \sin x$
- (b) $y = \cos x$
- (c) $y = \tan x$
- (d) $y = \sec x$
- 2. Find f'(x) and $f'(\pi/3)$ if $f(x) = \sin x \cos x$.
- 3. Use a derivative to evaluate each limit.

(a)
$$\lim_{h\to 0} \frac{\sin\left(\frac{\pi}{2}+h\right)-h}{h}$$

(a)
$$\lim_{h\to 0} \frac{\sin\left(\frac{\pi}{2}+h\right)-1}{h}$$
 (b) $\lim_{h\to 0} \frac{\csc(x+h)-\csc x}{h}$

EXERCISE SET

Graphing Utility

1-18 Find f'(x). ■

1.
$$f(x) = 4\cos x + 2\sin x$$

1.
$$f(x) = 4\cos x + 2\sin x$$
 2. $f(x) = \frac{5}{x^2} + \sin x$

3.
$$f(x) = -4x^2 \cos x$$

4.
$$f(x) = 2\sin^2 x$$

5.
$$f(x) = \frac{5 - \cos x}{5 + \sin x}$$
 6. $f(x) = \frac{\sin x}{x^2 + \sin x}$

6.
$$f(x) = \frac{\sin x}{x^2 + \sin x}$$

7.
$$f(x) = \sec x - \sqrt{2} \tan x$$

8.
$$f(x) = (x^2 + 1) \sec x$$

9.
$$f(x) = 4 \csc x - \cot x$$

10.
$$f(x) = \cos x - x \csc x$$

11.
$$f(x) = \sec x \tan x$$

12.
$$f(x) = \csc x \cot x$$

$$f(x) = \sec x \tan x$$

$$13. \ f(x) = \frac{\cot x}{1 + \csc x}$$

$$14. \ f(x) = \frac{\sec x}{1 + \tan x}$$

15.
$$f(x) = \sin^2 x + \cos^2 x$$

16.
$$f(x) = \sec^2 x - \tan^2 x$$

17.
$$f(x) = \frac{\sin x \sec x}{1 + x \tan x}$$

18.
$$f(x) = \frac{(x^2+1)\cot x}{3-\cos x \csc x}$$

19–24 Find d^2y/dx^2 .

19.
$$y = x \cos x$$

20.
$$y = \csc x$$

21.
$$y = x \sin x - 3 \cos x$$

22.
$$y = x^2 \cos x + 4 \sin x$$

23.
$$y = \sin x \cos x$$

24.
$$y = \tan x$$

25. Find the equation of the line tangent to the graph of
$$\tan x$$
 at (a) $x = 0$ (b) $x = \pi/4$ (c) $x = -\pi/4$.

$$(a) x = 0$$

(a) x = 0

$$(0) \times - n$$

26. Find the equation of the line tangent to the graph of
$$\sin x$$
 at (a) $x = 0$ (b) $x = \pi$ (c) $x = \pi/4$.

(a)
$$x = 0$$
 (b) $x = \pi$ (c) $x = \pi/4$.
27. (a) Show that $y = x \sin x$ is a solution to $y'' + y = 2 \cos x$.

(b) Show that
$$y = x \sin x$$
 is a solution of the equation $y^{(4)} + y'' = -2 \cos x$.

28. (a) Show that
$$y = \cos x$$
 and $y = \sin x$ are solutions of the equation $y'' + y = 0$.

(b) Show that
$$y = A \sin x + B \cos x$$
 is a solution of the equation $y'' + y = 0$ for all constants A and B.

29. Find all values in the interval
$$[-2\pi, 2\pi]$$
 at which the graph of f has a horizontal tangent line.

(a)
$$f(x) = \sin x$$

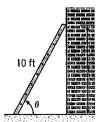
(b)
$$f(x) = x + \cos x$$

(c)
$$f(x) = \tan x$$

(d)
$$f(x) = \sec x$$

30. (a) Use a graphing utility to make rough estimates of the values in the interval
$$[0, 2\pi]$$
 at which the graph of $y = \sin x \cos x$ has a horizontal tangent line.

31. A 10 ft ladder leans against a wall at an angle θ with the horizontal, as shown in the accompanying figure. The top of the ladder is x feet above the ground. If the bottom of the ladder is pushed toward the wall, find the rate at which x changes with respect to θ when $\theta = 60^{\circ}$. Express the answer in units of feet/degree.



◆ Figure Ex-31

32. An airplane is flying on a horizontal path at a height of 3800 ft, as shown in the accompanying figure. At what rate is the distance s between the airplane and the fixed point P changing with respect to θ when $\theta = 30^{\circ}$? Express the answer in units of feet/degree.

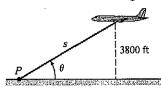
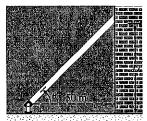


Figure Ex-32

33. A searchlight is trained on the side of a tall building. As the light rotates, the spot it illuminates moves up and down the side of the building. That is, the distance D between ground level and the illuminated spot on the side of the building is a function of the angle θ formed by the light beam and the horizontal (see the accompanying figure). If the searchlight is located 50 m from the building, find the rate at which D is changing with respect to θ when $\theta = 45^{\circ}$. Express your answer in units of meters/degree.



◆ Figure Ex-33

FOCUS ON CONCEPTS

5. Given the following table of values, find the indicated derivatives in parts (a) and (b).

. X1	/(x)*	$\mathcal{U}(s)$	g(x)	g(x)
3	5	-2	5	7
5	3	-1	12	4

- (a) F'(3), where F(x) = f(g(x))
- (b) G'(3), where G(x) = g(f(x))
- 6. Given the following table of values, find the indicated derivatives in parts (a) and (b).

X :	f(x)	f'(x)	g(s)	g(x)
-1	2	3	2	-3
2	0	4	1	-5

- (a) F'(-1), where F(x) = f(g(x))
- (b) G'(-1), where G(x) = g(f(x))

7-26 Find f'(x). **M**

- 7. $f(x) = (x^3 + 2x)^{37}$
- 8. $f(x) = (3x^2 + 2x 1)^6$
- **9.** $f(x) = \left(x^3 \frac{7}{x}\right)^{-2}$ **10.** $f(x) = \frac{1}{(x^5 x + 1)^9}$
- 11. $f(x) = \frac{4}{(3x^2 2x + 1)^3}$ 12. $f(x) = \sqrt{x^3 2x + 5}$

- 14. $f(x) = \sqrt{4 + \sqrt{3x}}$ 15. $f(x) = \sin\left(\frac{1}{x^2}\right)$ 16. $f(x) = \tan\sqrt{x}$ 17. $f(x) = 4\cos^5$
- 17. $f(x) = 4\cos^5 x$
- 18. $f(x) = 4x + 5\sin^4 x$
- 19. $f(x) = \cos^2(3\sqrt{x})$
- **20.** $f(x) = \tan^4(x^3)$
- **21.** $f(x) = 2\sec^2(x^7)$ **22.** $f(x) = \cos^3\left(\frac{x}{x+1}\right)$
- **23.** $f(x) = \sqrt{\cos(5x)}$
- **24.** $f(x) = \sqrt{3x \sin^2(4x)}$
- **25.** $f(x) = [x + \csc(x^3 + 3)]^{-3}$
- **26.** $f(x) = [x^4 \sec(4x^2 2)]^{-4}$

27-40 Find dy/dx.

- 27. $y = x^3 \sin^2(5x)$
- **28.** $y = \sqrt{x} \tan^3(\sqrt{x})$
- **29.** $y = x^5 \sec(1/x)$
- **30.** $y = \frac{\sin x}{\sec(3x+1)}$
- 31. $y = \cos(\cos x)$
- **32.** $y = \sin(\tan 3x)$
- 33. $y = \cos^3(\sin 2x)$
- 34. $y = \frac{1 + \csc(x^2)}{1 \cot(x^2)}$
- **35.** $y = (5x + 8)^7 (1 \sqrt{x})^6$ **36.** $y = (x^2 + x)^5 \sin^8 x$
- 37. $y = \left(\frac{x-5}{2x+1}\right)^3$ 38. $y = \left(\frac{1+x^2}{1-x^2}\right)^{17}$
- 39. $y = \frac{(2x+3)^3}{(4x^2-1)^8}$
- **40.** $y = [1 + \sin^3(x^5)]^{12}$

- 41-42 Use a CAS to find dy/dx.
 - **41.** $y = [x \sin 2x + \tan^4(x^7)]^5$
 - **42.** $y = \tan^4 \left(2 + \frac{(7-x)\sqrt{3x^2+5}}{x^3 + \sin x} \right)$
 - 43-50 Find an equation for the tangent line to the graph at the specified value of x.
 - **43.** $y = x \cos 3x$, $x = \pi$
 - **44.** $y = \sin(1 + x^3), x = -3$
 - **45.** $y = \sec^3\left(\frac{\pi}{2} x\right), \ x = -\frac{\pi}{2}$
 - **46.** $y = \left(x \frac{1}{x}\right)^3$, x = 2 **47.** $y = \tan(4x^2)$, $x = \sqrt{\pi}$
 - **48.** $y = 3 \cot^4 x$, $x = \frac{\pi}{4}$ **49.** $y = x^2 \sqrt{5 x^2}$, x = 1
 - **50.** $y = \frac{x}{\sqrt{1-x^2}}, x = 0$
 - **51-54** Find d^2y/dx^2 . Z
 - 51. $y = x \cos(5x) \sin^2 x$ 52. $y = \sin(3x^2)$

 - 53. $y = \frac{1+x}{1-x}$ 54. $y = x \tan\left(\frac{1}{x}\right)$
 - 55-58 Find the indicated derivative. ■
 - 55. $y = \cot^3(\pi \theta)$; find $\frac{dy}{d\theta}$
 - **56.** $\lambda = \left(\frac{au+b}{cu+d}\right)^6$; find $\frac{d\lambda}{du}$ (a, b, c, d constants).
 - 57. $\frac{d}{d\omega}[a\cos^2\pi\omega + b\sin^2\pi\omega]$ (a, b constants)
 - 58. $x = \csc^2\left(\frac{\pi}{3} y\right)$; find $\frac{dx}{dy}$.
- 59. (a) Use a graphing utility to obtain the graph of the function $f(x) = x\sqrt{4 - x^2}.$
 - (b) Use the graph in part (a) to make a rough sketch of the graph of f'.
 - (c) Find f'(x), and then check your work in part (b) by using the graphing utility to obtain the graph of f'.
 - (d) Find the equation of the tangent line to the graph of fat x = 1, and graph f and the tangent line together.
- 60. (a) Use a graphing utility to obtain the graph of the function $f(x) = \sin x^2 \cos x$ over the interval $[-\pi/2, \pi/2]$.
 - (b) Use the graph in part (a) to make a rough sketch of the graph of f' over the interval.
 - (c) Find f'(x), and then check your work in part (b) by using the graphing utility to obtain the graph of f' over the interval.
 - (d) Find the equation of the tangent line to the graph of f at x = 1, and graph f and the tangent line together over the interval.