Homework 4 Calculus 3

(1) $f(x, y, z)=\sqrt{36-9 x^{2}+4 y^{2}-z^{2}}$
(a) Describe and sketch the domain of f
(b) Find the linear approximation $L(x, y, z)$ to f at point $P(-2,5,-6)$
(c) Use the linear approximation from (b) to estimate $f(-2.05,4.9,-6.1)$
(2) Suppose that a function $f(x, y, z)$ is differentiable at $(3,5,8)$ and $L(x, y, z)=x-y+2 z-2$ is the local linear approximation at $(3,5,8)$. Find $f(3,5,8), f_{x}(3,5,8), f_{y}(3,5,8), f_{z}(3,5,8)$
(3) Find an equation for the tangent plane and parametric equations for the normal line to the surface $z=e^{3 y} \sin (3 x)$ at $P(\pi / 6,0,1)$
(4) $f(x, y, z)=\sqrt{2 x-4 y+5 z}$; Find a unit vector in the direction in which f increases most rapidly at $P(1,-3,7)$ and find the rate of change of f at P in that direction.
(5) Find the critical points and classify each as a relative max, relative min or saddle point
a) $f(x, y)=2 x^{3}+y^{3}+3 x^{2}-3 y-12 x-4$
b) $f(x, y)=4 x y-2 x^{4}-y^{2}+4 x-2 y$
c) $f(x, y)=x y e^{-\left(16 x^{2}+9 y^{2}\right) / 288}$
d) $f(x, y)=x^{3}+3 x y^{2}-15 x+y^{3}-15 y+9$
(6) Find the absolute extremum of the given function on the indicated closed and bounded set R
a) $f(x, y)=x^{2}-3 y^{2}-2 x+6 y ; R$ is the region bounded by the square with vertices $(0,0),(0,2)$, $(2,0),(2,2)$
b) $f(x, y)=x e^{y}-x^{2}-e^{y} ; R$ is the region bounded by the rectangle with vertices $(0,0),(0,1)$, $(2,1),(2,0)$
c) $f(x, y)=x^{2}+2 y^{2}-x$ where R is disk $x^{2}+y^{2} \leq 4$
d) $f(x, y)=x y^{2}$ where R is disk $x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0$
e) $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+1$ on the closed triangular plate bounded by the lines $x=0, y=$ $4, y=2 x$ in the first quadrant
(7) Use Lagrange multipliers to find the maximum and minimum values of
a) $f(x, y, z)=3 x+6 y+2 z$ subject to $2 x^{2}+4 y^{2}+z^{2}=70$
b) $f(x, y, z)=x y z$ subject to $x^{2}+y^{2}+z^{2}=1$
(8) Find all points on $x+y+z=5$ in the 1st octant at which $f(x, y, z)=x y^{2} z^{2}$ has a maximum value
(9) A company produces x units of commodity A and y units of commodity B. All the units can be sold for $p=100-x$ dollars per unit of A and $q=100-y$ dollars per unit of B. The cost (in dollars) of producing these units is given by the joint-cost function $C(x, y)=x^{2}+x y+y^{2}$
a) Write the formula for the profit $P(x, y) \quad$ b) What should x and y be to maximize profit?
(10) $f(x, y, z)=\sqrt{\frac{x+z}{2 z-y}}$; Find a unit vector in the direction in which f decreases most rapidly at $P(5,7,6)$ and find the rate of change of f at P in that direction.
(11) $f(x, y, z)=\tan ^{-1} \frac{x}{z+y}$; Find a unit vector in the direction in which f increases most rapidly at $P(4,2,2)$ and find the rate of change of f at P in that direction.
(12) Find two vectors of length 4 that are normal to the surface $z=\sqrt{\frac{z+x}{y-1}}$ at the point $P(3,5,1)$

