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Abstract In this note, we calculate the Green’s function for the linear operator
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−�D f = − f ′′

with (Dirichlet) boundary conditions f (0) = f (1) = 0. As a consequence of this
computation, we obtain Euler’s formula

ζ(2n) =
∑

k∈N
k−2n = (−1)n−122n−1π2n B2n

(2n)! , n ∈ N,

where ζ(·) denotes the Riemann zeta function and Bn is the nth Bernoulli number.
This generalizes the example given by Grieser [29] for n = 1. In addition, we derive
its z-dependent generalization for z ∈ C\{(kπ)2n

}
k∈N,

∑

k∈N

[
(kπ)2n − z

]−1 = 1

2nz

[
n −

n−1∑

j=0

ω
1/2
j z1/(2n) cot

(
ω
1/2
j z1/(2n)

)]
, n ∈ N,

where ω j = e2π i j/n , 0 ≤ j ≤ n − 1, represent the nth roots of unity. In this context

we also derive the Green’s function of
(
(−�D)n − z I

)−1
, n ∈ N.

Keywords Dirichlet Laplacian · Green’s function · Trace class operators · Trace
formulas · Riemann zeta function · Bernoulli numbers · Bernoulli polynomials

2010 Mathematics Subject Classification Primary: 11M06, 47A10, Secondary:
05A15, 47A75

1 Introduction

An astute student in a sophomore differential equations course can compute the set
of eigenvalues of the Dirichlet boundary value problem

− �D f = − f ′′, f (0) = f (1) = 0. (1.1)

Indeed, the underlying linear operator −�D is the positive, self-adjoint operator in
the Hilbert space L2((0, 1); dx),

(−�D f )(x) = − f ′′(x) for a.e. x ∈ (0, 1),

f ∈ dom(−�D) = {
g ∈ L2((0, 1); dx)

∣∣ g, g′ ∈ AC([0, 1]); g(0) = g(1) = 0;
(1.2)

g′′ ∈ L2((0, 1); dx)
}

(AC([0, 1]) denotes the set of absolutely continuous functions on [0, 1]), with purely
discrete spectrum,
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σ(−�D) = {λk = (kπ)2
}

k∈N. (1.3)

The eigenspace of each λk is one-dimensional and spanned by the normalized eigen-
functions

− �Duk = (kπ)2uk, uk(x) = 21/2 sin(kπx), 0 ≤ x ≤ 1,

‖uk‖L2((0,1);dx)) = 1, k ∈ N.
(1.4)

In particular, the collection
{
21/2 sin(kπx)

}
k∈N forms a complete orthonormal basis

in L2((0, 1); dx). Since 0 /∈ σ(−�D), (−�D)−1 exists and is explicitly given by

(
(−�D)−1 f

)
(x) =

∫ 1

0
dy K1(x, y) f (y), f ∈ L2((0, 1); dx), (1.5)

where K1( · , · ) denotes the Green’s function for −�D given by

K1(x, y) =
{

x(1 − y), 0 ≤ x ≤ y ≤ 1,

y(1 − x), 0 ≤ y < x ≤ 1.
(1.6)

This operator (−�D)−1 is a bounded, self-adjoint, compact operator with eigenval-
ues {λ−1

k }∞k=1 and associated eigenfunctions {uk}∞k=1. Moreover, as discussed below,
(−�D)−1 is a trace class operator and this implies

∑

k∈N
λ−1

k =
∫ 1

0
dx K1(x, x) = 1

6
(1.7)

from which the solution to the famous “Basel problem” quickly emerges:

∑

k∈N

1

k2
= π2

6
. (1.8)

This example, and methodology, was studied by Grieser [29] in a paper centered on
trace formulas. In this note, we generalize Grieser’s work by explicitly computing
the Green’s function Kn(·, ·) associated with (−�D)n for any integer n ≥ 1 and from
this we deduce, as a corollary, Euler’s formula for ζ(2n):

ζ(2n) =
∑

k∈N

1

k2n
= (−1)n−122n−1π2n B2n

(2n)! , n ∈ N; (1.9)

here ζ( · ) denotes the Riemann zeta function and {Bn}n∈N0 (N0 = N ∪ {0}) denotes
the sequence of Bernoulli numbers. In our final section we derive a z-dependent
generalization of (1.9) for z ∈ C\{(kπ)2n

}
k∈N,
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∑

k∈N

[
(kπ)2n − z

]−1 = 1

2nz

[
n −

n−1∑

j=0

ω
1/2
j z1/(2n) cot

(
ω
1/2
j z1/(2n)

)]
, n ∈ N,

(1.10)
whereω j = e2π i j/n , 0 ≤ j ≤ n − 1, represent the nth roots of unity. To derive (1.10)

we explicitly compute theGreen’s function Kn(z; · , · ) of ((−�D)n − z I
)−1

, n ∈ N.
There are several excellent expository articles in the literature concerning the

history of the zeta function and, more specifically, Euler’s formula (1.9). The paper
by Ayoub [6] on the zeta function includes discussion of some of Euler’s original
proofs of the computation of ζ(2) (the Basel problem). Kline [39] gives a thorough
account of Euler’s early influence on infinite series, including Euler’s evaluation of
ζ(2n) for n ∈ N. Two important sources on the calculation of ζ(2) are the article
[53] and book [54, Chap. 21] by Sandifer who details three of Euler’s solutions of
the Basel problem beginning in 1735. We remark that the book by Roy [52] notes
that Euler gave eight solutions of the Basel problem in his career. As noted in [7], the
Basel problem was open for 91 years before Euler supplied the first known proof.
Indeed, PietroMengoli posed this problem in 1644 (in 1655, JohnWallis commented
on this problem in his book Arithmetica Infinitorum).

Behind the scenes ofmany known proofs of (1.9) aremethods relying onCauchy’s
residue calculus, Weierstrass’ product theorem, Parseval’s theorem, and Fourier
expansions. There are at least three ‘most common’ proofs of (1.9) given in var-
ious texts. One of them is the original proof given by Euler [24] (see also [40]
[Chap. VI, Sect. 24]) in 1741. His proof of (1.9) involved matching coefficients for
two different representations of π z cot(π z), one a power series expansion and the
other a partial fractions decomposition; see [3] for a short, but concise, explanation
of Euler’s method.

A second well-known proof of (1.9) is obtained by setting z = 2n in Riemann’s
functional equation

ζ(1 − z) = 2(2π)−z�(z) cos(π z/2)ζ(z) (1.11)

and using the fact that ζ(1 − 2n) = −B2n/(2n); see [1] [23.2.6 and 23.2.15].
A third standard proof is to evaluate the Fourier cosine series of B2n(x), the

Bernoulli polynomial of degree 2n, at x = 0; for example, see [1] [23.1.18] or [4]
[Theorem 12.19].

There are several additional contributions in the literature regarding Euler’s for-
mula (1.9). Some of these references deal with new proofs for the special case n = 1,
the Basel problem case (which we call group 1) and other proofs discuss the more
general n ∈ N case (group 2). We briefly discuss the contents of both groups.

For group 1, we note that, in his book [22] [Chap. 3], Dunham illustrates, in detail,
one of Euler’s solutions by computing ζ(2) using the infinite product expansion of
sin(x)/x, namely,

sin(x)

x
=

∏

k∈N

(
1 − x2

k2π2

)
. (1.12)
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Specifically, using the Maclaurin series for sin(x), expanding the right-hand side of
(1.12) into a Maclaurin series and then comparing coefficients of x2 on both sides,
the value of ζ(2) is found. Another proof of the computation of ζ(2) was given
by Papadimitriou in [48]; his remarkable method stems from the simple inequality
sin(x) < x < tan(x) on (0, π/2); see also [34] and [57] which both use ideas similar
to those used by Papadimitriou. Choe [12] computes ζ(2) by first cleverly showing
that ∑

k∈N0

1

(2k + 1)2
= π2

8
(1.13)

and noting, by absolute convergence, that

ζ(2) =
∑

k∈N0

1

(2k + 1)2
+

∞∑

k∈N

1

(2k)2
= 4

3

∑

k∈N0

1

(2k + 1)2
; (1.14)

(it should be noted that Euler also used this ‘trick’ to compute ζ(2) in one of his
solutions). Kimble [38] offers a variation of this proof by employing the Maclaurin
series of arcsin(x) and using the identity

π2

6
= 4

3

(arcsin(1))2

2
= 4

3

∫ 1

0
dx

arcsin(x)√
1 − x2

. (1.15)

In [5], Apostol gives another proof of Euler’s formula for n = 1 by evaluating the
double integral ∫ 1

0

∫ 1

0
dxdy

1

1 − xy
. (1.16)

In [59, 62], Stark also supplies new proofs of ζ(2). Likewise, the following contri-
butions all deal with interesting techniques, some new and some variations of older
methods, of computing ζ(2): Benko [7], Benko and Molokach [8], Chapman [10],
Daners [17], Giesey [26], Harper [31], Hirschhorn [32], Hofbauer [33], Ivan [36],
Knopp and Schur [41], Kortram [42], Marshall [44], Matsuoka [45], Passare [49],
and Vermeeren [67].

We comment briefly on the contents of group two, the set of papers dealing
with proofs of the computation of ζ(2n) for each n ∈ N. Apostol [3] generalizes
Papadimitriou’s method (n = 1) to compute ζ(2n). Two different proofs of (1.9)
were given by Berndt in [9]; one proof uses a special case of the Riemann–Lebesgue
lemma and his second proof is, essentially, a further generalization of Apostol’s proof
in [3]. More generally, the identity

∑

k∈N

1

k2 − z
= 1 − π z1/2 cot

(
π z1/2

)

2z
, z ∈ C\N. (1.17)
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already appeared in Titchmarsh [65] [p. 113]; it was later employed in Dikii [21]
[Eq. (3.9)] in his seminal paper on (regularized) trace formulas for Sturm–Liouville
operators and eigenvalue asymptotics. In a recent text, Teschl [64] [p. 85] uses trace
methods to derive (1.17), and, by comparing the power series of both sides of (1.17)
at z = 0, he deduces (1.9). The recent contribution by Alladi and Defant [2] estab-
lishes (1.9) by applying Parseval’s identity to the Fourier coefficients of the periodic
function xk and using induction on k; see also [43]. Other interesting, and diverse,
proofs of (1.9) are given by Chen [11], Chungang and Yonggao [13], Ciaurri, Navas,
Ruiz andVarona [14], deAmo, Díaz Carillo and Fernández-Sánchez [19], Estermann
[23], Hovstad [35], Osler [47], Robbins [51], Stark [60, 61], Tsumura [66], Williams
[69], and Williams [70]. For zeta functions associated to general Sturm–Liouville
operators we refer to the classical work of Dikii [20, 21] (see also the recent article
[25] and the extensive literature cited therein).

Lastly, we note that there are q version results of the identity in (1.9). Indeed,
Goswami [30] recently gave a natural family of identities whose limits as q → 1with
|q| < 1 give Euler’s formula for each n ∈ N; see also the contribution [63] by Sun.

2 Bernoulli Polynomials and Bernoulli Numbers

For properties of Bernoulli polynomials andBernoulli numbers, we refer the reader to
the standard sources [1] [Chap. 23] and [27] [Sects. 9.6 and 9.7] as well as the online
Digital Library of Mathematical Functions https://dlmf.nist.gov/ and the accompa-
nying book [46].

The Bernoulli polynomials {Bn(x)}n∈N0 can be defined through the generating
function

zexz

ez − 1
=

∑

n∈N0

Bn(x)
zn

n! , |z| < 2π, x ∈ R. (2.1)

For the record, the first few Bernoulli polynomials are given by

B0(x) = 1, B1(x) = x − 1

2
, B2(x) = x2 − x + 1

6
, B3(x) = x3 − 3

2
x2 + 1

2
x,

B4(x) = x4 − 2x3 + x2 − 1

30
, etc.

(2.2)

Among several properties that these polynomials satisfy, we will make use of the
fact that

∫ 1

0
dx B2n(x) = 0, n ≥ 1, (2.3)

which follows from the identities (see [1][23.1.8 and 23.1.11])

https://dlmf.nist.gov/
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Bn(1 − x) = (−1)n Bn(x), n ≥ 1, (2.4)

and
∫ x

0
du Bn(u) = Bn+1(x) − Bn+1(0)

n + 1
, n ≥ 1. (2.5)

We also recall the Fourier cosine series expansion of B2n(x) (see [1] [23.1.18] or [4]
[Theorem 12.19]), which is given by

(−1)n−1(2n)!
22n−1π2n

∑

k∈N

cos(2kπx)

k2n
= B2n(x), 0 ≤ x ≤ 1, n ∈ N. (2.6)

The Bernoulli numbers {Bn}n∈N0 are defined as Bn = Bn(0). For example,

B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30,

B10 = 5/66, etc., B2n+1 = 0 for n ≥ 1. (2.7)

We will see in Sect. 4, that the Green’s function Kn(·, ·), associated with the nth

power of the operator −�D defined in (1.1), can be given explicitly in terms of
Bernoulli polynomials.

3 On Trace Class Operators

Aclassical result in an elementary linear algebra course states that, for an arbitraryn ×
n matrix B = (B j,k)1≤ j,k≤n of complex numbers with eigenvalues {βk}n

k=1 (counting
algebraic multiplicities), one has

tr(B) =
n∑

j=1

B j, j =
n∑

k=1

βk . (3.1)

This result generalizes to an important class of compact operators in an infinite-
dimensional, separable Hilbert space (H, ( · , · )H), the so-called trace class opera-
tors. Specifically, a bounded linear operator T : H → H is trace class if, for some
(and hence for all) orthonormal basis {e j } j∈N of H, the sum

∑

j∈N
(e j , (T

∗T )1/2e j )H (3.2)

is finite; see [56] [Sect. 3.6] for an in-depth discussion of this topic. In this case, the
trace of T is defined to be



34 M. S. Ashbaugh et al.

tr (T ) =
∑

j∈N
(e j , T e j )H; (3.3)

this finite-valued sum is absolutely convergent and independent of the choice of
orthonormal basis {e j } j∈N. In addition, if {τk}k∈J (with J ⊆ N an appropriate index
set) represent the eigenvalues ofT, counting algebraicmultiplicities, thenbyLidskii’s
theorem (see, e.g., [55] [Chap. 3], [56] [Sect. 3.12])

tr (T ) =
∑

j∈N
(e j , T e j )H =

∑

k∈J

τk . (3.4)

For the purpose of this note, we discuss a particular set of trace class integral
operators. Let [a, b] ⊂ R be a compact interval and K (· , · ) : [a, b] × [a, b] → C

be a continuous function. Define T : L2((a, b); dx) → L2((a, b); dx) by

(T f ) (x) =
∫ b

a
dy K (x, y) f (y), f ∈ L2((a, b); dx), (3.5)

and assume that T ≥ 0 (implying K (x, x) ≥ 0, x ∈ [a, b]). Then by Mercer’s The-
orem (see, e.g.., [18] [Proposition 5.6.9], [56] [Theorem 3.11.9]), T is trace class
and

tr (T ) =
∫ b

a
dx K (x, x) ∈ [0,∞). (3.6)

We now see that the formulas given in (3.4) and (3.6) afford us two different means to
compute the trace of an integral operator of the type defined in (3.5); this observation
is fundamental in our pursuit of establishing Euler’s formula (1.9).

We now connect these trace class results to the inverse of the self-adjoint operator
(−�D)n , where n ∈ N and −�D is the second-order differential operator defined in
(1.1). It is straightforward to see that the two-point boundary value problem defined
by (−�D)n is given by

(
(−�D)n f

)
(x) = (−1)n f (2n)(x) for a.e. x ∈ (0, 1), (3.7)

f ∈ dom
(
(−�D)n

) = {g ∈ L2((0, 1); dx)
∣∣ g(k) ∈ AC([0, 1]), 0 ≤ k ≤ 2n − 1;

g(2 j)(0) = g(2 j)(1) = 0, 0 ≤ j ≤ n − 1; g(2n) ∈ L2((0, 1); dx)}.

The spectrum of (−�D)n is given by

σ
(
(−�D)n

) = (
σ
( − �D

))n = {
λn

k = (kπ)2n
}

k∈N, (3.8)

where λk was introduced in (1.3). Furthermore, since 0 /∈ σ
(
(−�D)n

)
for all n ∈ N,

one infers that
(
(−�D)n

)−1 = (−�D)−n existswith eigenvaluesλ−n
k = (kπ)−2n , k ∈



Green’s Functions and Euler’s Formula for ζ(2n) 35

N, and corresponding eigenfunctions {uk}∞k=1 defined in (1.4). The inverse (−�D)−n :
L2((0, 1); dx) → L2((0, 1); dx) of (−�D)n is a bounded, self-adjoint, and compact
integral operator given by

(
(−�D)−n f

)
(x) =

∫ 1

0
dy Kn(x, y) f (y), f ∈ L2((0, 1); dx), (3.9)

where Kn(·, ·) is the unique Green’s function for (−�D)n in the sense of [15] [The-
orem 7.2.2]. In particular, the Green’s function Kn(·, ·) has the following properties:
(i) Kn(·, ·) is symmetric on [0, 1] × [0, 1] and for fixed y ∈ [0, 1], Kn(·, y) and its
first (2n − 1) derivatives are continuous on [0, y) and (y, 1]. At the point x = y,

Kn(·, ·) and its first (2n − 2) derivatives have removable singularities (i.e., the left
and right limits exist and equal each other), while the (2n − 1)st derivative has a
jump discontinuity satisfying

∂2n−1Kn(y+, y)

∂x2n−1
− ∂2n−1Kn(y−, y)

∂x2n−1
= (−1)n . (3.10)

(i i)As a function of x ∈ [0, 1]\{y}, Kn( · , y), is a solution of the differential equation

(
(−�D)n f

)
(x) = 0, x ∈ [0, 1]\{y}, (3.11)

and as a function of x ∈ [0, 1], Kn( · , y), satisfies the boundary conditions

f (2 j)(0) = f (2 j)(1) = 0, 0 ≤ j ≤ n − 1, (3.12)

for each y ∈ [0, 1].
(i i i)For each f ∈ L2((0, 1); dx), the solutionu ∈ dom

(
(−�D)n

)
of (−�D)nu = f

is of the form

u(x) =
∫ 1

0
dy Kn(x, y) f (y) for a.e. x ∈ [0, 1]. (3.13)

4 The Green’s Function for (−�D)n, n ∈ N

Following the general method developed, for example in [16] [Sect. 6.7] (see also
[58]), some (increasingly) tedious computations yield the following explicit Green’s
functions Kn(x, y) for n = 2, 3, and 4:
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K2(x, y) =

⎧
⎪⎨

⎪⎩

1

6
x(y − 1)(x2 + y2 − 2y), 0 ≤ x ≤ y ≤ 1,

1

6
y(x − 1)(y2 + x2 − 2x), 0 ≤ y < x ≤ 1,

(4.1)

K3(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

360
x(1 − y)(8y − 20x2y + 10x2y2 + 8y2 − 12y3 +3y4 + 3x4),

0 ≤ x ≤ y ≤ 1,
1

360
y(1 − x)(8x − 20xy2 + 10x2y2 + 8x2 − 12x3 +3x4 + 3y4),

0 ≤ y < x ≤ 1,
(4.2)

and

K4(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

15120
x(y − 1)(−32y + 56x2y − 42x4y + 56x2y2 −84x2y3

+21x2y4 + 21x4y2 + 3x6 − 32y2 + 24y3 + 24y4 −18y5 + 3y6),
0 ≤ x ≤ y ≤ 1,

1

15120
y(x − 1)(−32x + 56xy2 − 42xy4 + 56x2y2 −84x3y2

+21x4y2 + 21x2y4 + 3y6 − 32x2 + 24x3 + 24x4 −18x5 + 3x6),

0 ≤ y < x ≤ 1.
(4.3)

Calculations show that

∫ 1

0
dx K2(x, x) = 1

90
,

∫ 1

0
dx K3(x, x) = 1

945
,

∫ 1

0
dx K4(x, x) = 1

9450
, (4.4)

and the values ζ(4), ζ(6), and ζ(8) quickly follow. However, this approach of directly
calculating Kn(·, ·) for each positive integer n does not seem to lend itself to a general
formula.

Alternatively, for n ∈ N and y ≥ x, Kn(x, y) satisfies the boundary value problem

∂2h(x, y)

∂x2
= −Kn−1(x, y),

h(0, y) = h(x, 1) = ∂h

∂x
(0, 0) = 0;

(4.5)

consequently, knowing Kn−1( · , · ) allows us to determine Kn(·, ·). This approach,
as well, is not helpful in determining Kn(·, ·) for all n ∈ N.

Fortunately, the following considerations permit us to compute Kn( · , · ) explicitly
for any n ∈ N. First, we recall the general (absolutely and uniformly convergent)
Green’s function formula (here I = IL2((0,1);dx))
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(
(−�D)n − z I

)−1
(x, y) = Kn(z; x, y) = 2

∑

k∈N

sin(kπx) sin(kπy)

[(kπ)2n − z] ,

x, y ∈ [0, 1],
(4.6)

in terms of the normalized (simple) eigenfunctions uk(x) = 21/2 sin(kπx), 0 ≤ x ≤
1, k ∈ N of−�D . Indeed, equation (4.6) follows instantly from the spectral theorem
for self-adjoint operators applied to the function

(
(−�D)n − z I

)−1
of−�D , yielding

(
(−�D)n − z I

)−1 =
∑

k∈N

[
(kπ)2n − z

]−1
(uk, · )Huk . (4.7)

Taking z = 0 in (4.6) yields

Kn(x, y) = 2
∑

k∈N

sin(kπx) sin(kπy)

(kπ)2n
, 0 ≤ x, y ≤ 1. (4.8)

We are now in position to prove one of the principal results of this note.

Theorem 1 For each n ∈ N,

Kn(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−1)n−122n−1

(2n)!
[

B2n

(
y − x

2

)
− B2n

(
x + y

2

)]
, 0 ≤ x ≤ y ≤ 1,

(−1)n−122n−1

(2n)!
[

B2n

(
x − y

2

)
− B2n

(
x + y

2

)]
, 0 ≤ y < x ≤ 1,

(4.9)
where B2n(x) is the Bernoulli polynomial of degree 2n. As a corollary of (4.9) one
recovers Euler’s formula for ζ(2n) (cf. (1.9)),

ζ(2n)π−2n =
∑

k∈N

1

(kπ)2n
= tr

(
(−�D)−n

) =
∫ 1

0
dx Kn(x, x)

=
∫ 1

0
dx

(−1)n−122n−1

(2n)! [B2n − B2n (x)]

= (−1)n−122n−1B2n

(2n)! . (4.10)

Proof Since

sin(kπx) sin(kπy) = [cos(kπ(x − y)) − cos(kπ(x + y))]/2, (4.11)

one infers from (2.6) and (4.8) that
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Kn(x, y) = 2

π2n

∑

k∈N

sin(kπx) sin(kπy)

k2n

= 1

π2n

∑

k∈N

cos(kπ(x − y)) − cos(kπ(x + y))

k2n

= 1

π2n

[
∑

k∈N

cos(kπ(x − y))

k2n
−

∑

k∈N

cos(kπ(x + y))

k2n

]

= 1

π2n

[
(−1)n−122n−1π2n

(2n)! B2n

(
x − y

2

)
− (−1)n−122n−1π2n

(2n)! B2n

(
x + y

2

)]

= (−1)n−122n−1

(2n)!
[

B2n

(
x − y

2

)
− B2n

(
x + y

2

)]
. (4.12)

In particular,

Kn(x, x) = (−1)n−122n−1

(2n)! [B2n − B2n (x)] . (4.13)

To obtain (4.10) one employs (2.3), (4.13), and the identities in (3.4) and (3.6) applied
to T = (−�D)−n. �

5 Some Generalizations

In our final section we probe some (z-dependent) extensions of Theorem 1.
More precisely, for x, y ∈ [0, 1], n ∈ N, we will be considering

(
(−�D)n − z I

)−1
(x, y) = Kn(z; x, y) = 2

∑

k∈N

sin(kπx) sin(kπy)

[(kπ)2n − z] ,

z ∈ C
∖{

(kπ)2n
}

k∈N,

(5.1)

and

( − �D − z I
)−n

(x, y) = K̃n(z; x, y) = 2
∑

k∈N

sin(kπx) sin(kπy)

[(kπ)2 − z]n

= 1

(n − 1)!
dn−1

dzn−1
K1(z; x, y), z ∈ C

∖{
(kπ)2

}
k∈N,

noting that,

(−�D)−n(x, y) = Kn(x, y) = Kn(z; x, y)
∣∣
z=0 = K̃n(z; x, y)

∣∣
z=0, (5.2)

K1(z; x, y) = K̃1(z; x, y), z ∈ C
∖{

(kπ)2
}

k∈N. (5.3)
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We start with the case of K̃n(z; · , · ), n ∈ N, and recall the trace formula,

∑

k∈N

[
(kπ)2 − z

]−μ

= π1/2

(2z1/2)μ−(1/2)�(μ)

∫ ∞

0
dx

[
eπx − 1

]−1
xμ−(1/2) Iμ−(1/2)

(
z1/2x

)
, (5.4)

�(μ) > 1/2,
∣∣�(

z1/2
)∣∣ < π,

obtained as an elementary consequence of [27] [No. 6.6247] or [68] [Eq. (9) on
p. 386] (originally due to Kapteyn [37]), where (cf. [46] [No. 10.27.6])

Iν(ζ ) = e∓i(π/2)ν Jν(±iζ ), �(ν) ≥ 0, −π ≤ ±Arg(ζ ) ≤ π/2, (5.5)

where Arg( · ) represents the single-valued principal value of the argument function
onC\(−∞, 0]. Here Jν( · ) (resp., Iν( · )) denotes theBessel function (resp., modified
Bessel function) of order ν (cf., e.g.., [1] [Chap. 9], [46] [Chap. 10]).

Employing

Iν(ζ ) = (ζ/2)ν
∑

k∈N0

(ζ/2)2k

k! �(ν + k + 1)
, �(ν) ≥ 0, ζ ∈ C, (5.6)

and its asymptotics as ζ → 0, one confirms (cf. [1] [No. 23.2.7], [46] [No. 25.5.1])
that

∑

k∈N
(kπ)−2μ = 1

�(2μ)

∫ ∞

0
ds

[
eπs − 1

]−1
s2μ−1 = π−2μζ(2μ), �(μ) > 1/2.

(5.7)
Next, one notes that the explicit formula for K1,

K1(z; x, y) = 1

z1/2 sin
(
z1/2

)
{
sin

(
z1/2x

)
sin

(
z1/2(1 − y)

)
, 0 ≤ x ≤ y ≤ 1,

sin
(
z1/2y

)
sin

(
z1/2(1 − x)

)
, 0 ≤ y ≤ x ≤ 1,

(5.8)
readily leads to the well-known fact (see (1.17) and the subsequent paragraph),

∑

k∈N

[
(kπ)2 − z

]−1 = tr
(
(−�D − z IL2((0,1);dx))

−1
) =

∫ 1

0
dx K1(z; x, x)

= 1

2z

[
1 − z1/2 cot

(
z1/2

)]
, z ∈ C

∖{
(kπ)2

}
k∈N.

(5.9)

(This also follows from [25] [Theorem 3.4, Example 3.15].) Here we used the ele-
mentary fact (see, e.g.., [27] [No. 2.5324]),
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∫ 1

0
dx sin(ax) sin(a(1 − x)) = (2a)−1 sin(a)[1 − a cot(a)], a ∈ C. (5.10)

Lemma 1 Let n ∈ N and z ∈ C
∖{

(kπ)2
}

n∈N. Then

∑

k∈N

[
(kπ)2 − z

]−n = tr
(
(−�D − z IL2((0,1);dx))

−n
) =

∫ 1

0
dx K̃n(z; x, x)

= 1

(n − 1)!
dn−1

dzn−1

{
1

2z

[
1 − z1/2 cot

(
z1/2

)]}
.

(5.11)

In addition,

K̃n(z; x, y) =
∞∑

m=n

n

(
m

n

)
Km(x, y) zm−n, |z| < π2, (5.12)

and

∑

k∈N

[
(kπ)2 − z

]−n =
∞∑

m=n

n

(
m

n

)
(−1)m+122m−1B2m

(2m)! zm−n, |z| < π2. (5.13)

Proof Differentiation of (5.9) (n − 1) times with respect to z yields (5.11).
Employing the resolvent expansion

(
(−�D) − z I

)−1 =
∑

m∈N
(−�D)−m zm−1, |z| < π2, (5.14)

yields
K1(z; x, y) =

∑

m∈N
Km(x, y) zm−1, |z| < π2, (5.15)

and hence,

Km+1(x, y) = 1

m!
∂m K1(z; x, y)

∂zm

∣∣∣∣
z=0

. (5.16)

Taking the trace of either side in (5.12) (cf. (4.10)) implies (5.13). �

Combining (5.4) (for μ = n ∈ N) and (5.11) then yields the evaluation of the
following integral
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π1/2

(2z1/2)n−(1/2)[(n − 1)!]
∫ ∞

0
dx

[
eπx − 1

]−1
xn−(1/2) In−(1/2)

(
z1/2x

)

=
∑

k∈N

[
(kπ)2 − z

]−n = 1

(n − 1)!
dn−1

dzn−1

{
1

2z

[
1 − z1/2 cot

(
z1/2

)]}
, (5.17)

n ∈ N,
∣∣�(

z1/2
)∣∣ < π.

Although elementary,wewere not able tofind formula (5.17) in the standard literature
on (integrals of) Bessel functions.

Next, we turn to a discussion of Kn(z; · , · ), n ∈ N, and derive the z-dependent
analogs of (4.9) and (4.10).

Theorem 2 Let n ∈ N and z ∈ C\{(kπ)2n
}

n∈N. Then

Kn(z; x, y) = 1

nz1−(1/n)

n−1∑

j=0

ω j K1
(
ω j z

1/n; x, y
)
, x, y ∈ [0, 1], (5.18)

and

∑

k∈N

[
(kπ)2n − z

]−1 = tr
(
(−�D)n − z I

)−1) =
∫ 1

0
dx Kn(z; x, x)

= 1

2nz

[
n −

n−1∑

j=0

ω
1/2
j z1/(2n) cot

(
ω
1/2
j z1/(2n)

)]
,

(5.19)

where ω j = e2π i j/n, 0 ≤ j ≤ n − 1, represent the nth roots of unity.
In addition,

Kn(z; x, y) =
∑

m∈N
Knm(x, y) zm−1, |z| < π2n. (5.20)

and

∑

k∈N

[
(kπ)2n − z

]−1 =
∑

∈N0

(−1)n(+1)+122n(+1)−1B2n(+1)

[(2n( + 1)]! z, |z| < π2n. (5.21)

Proof We recall the partial fraction expansion

1

λn − z
= 1

∏n−1
j=0[λ − ω j z1/n] = 1

nz1−(1/n)

n−1∑

j=0

ω j

λ − ω j z1/n
, z ∈ C\{λn

}
, (5.22)

a consequence of the following well-known facts: Introducing
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fn(z) = λn − z =
n−1∏

j=0

(
λ − ω j z

1/n
)
, z ∈ C (5.23)

(fixing the branch of z1/n), one obtains

d

dz
ln( fn(z)) = −[

λn − z
]−1 = d

dz

n−1∑

j=0

ln
(
λ − ω j z

1/n
)

= −1

n

1

z1−(1/n)

n−1∑

j=0

ω j
[
λ − ω j z

1/n
]−1

, z ∈ C\{λn
}
.

(5.24)

Thus, by the functional calculus implied by the spectral theorem for self-adjoint
operators,

(
(−�D)n − z I

)−1 =
n−1∏

j=0

( − �D − ω j z
1/n I

)−1

= 1

nz1−(1/n)

n−1∑

j=0

ω j
( − �D − ω j z

1/n I
)−1

, z ∈ C\{(kπ)2n
}

n∈N,

(5.25)

implying (5.18). The fact (5.10) then yields (5.19).
Relation (5.20) follows from the resolvent expansion (cf. (5.14))

(
(−�D)n − z I

)−1 =
∑

m∈N
(−�D)−nm zm−1, |z| < π2n. (5.26)

Finally, to prove (5.21) we employ Euler’s identity (cf. [28] [No. 6.87]),

ζ cot(ζ ) =
∑

∈N0

(−1)22 B2

(2)! ζ 2, |ζ | < π, (5.27)

implying

1 − ζ cot(ζ )

2
=

∑

∈N

(−1)+122−1B2

(2)! ζ 2, |ζ | < π. (5.28)

Thus,
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∑

k∈N

[
(kπ)2n − z

]−1 =
n−1∑

j=0

1

2nz

[
1 − ω

1/2
j z1/(2n) cot

(
ω
1/2
j z1/(2n)

)]
(5.29)

=
∑

∈N

1

n

( n−1∑

j=0

ω
j

)
(−1)+122−1B2

(2)! z−1+(/n) (5.30)

=
∑

∈N

(−1)n+122n−1B2n

(2n)! z−1, |z| < π2n, (5.31)

utilizing

1

n

n−1∑

j=0

ω
j =

{
1,  ≡ 0 (mod n),

0, otherwise.
(5.32)

�

One notes that taking the trace on either side of (5.20) (cf. (4.10)) yields an
alternative derivation of (5.21).

The cases n = 1, 2 in (5.19) are known and can be found in [50] [No. 5.1.25.4],
[64] [p. 85], [65] [p. 113] for n = 1, and in [50] [No. 5.1.27.3] for n = 2; we have
not found the cases n ≥ 3 in the literature.

Taking z → 0 in (5.21) yields another derivation of Euler’s formula (4.10).
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