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We present an abstract approach to universal inequalities
for the discrete spectrum of a self-adjoint operator, based
on commutator algebra, the Rayleigh–Ritz principle, and one
set of “auxiliary” operators. The new proof unifies classical
inequalities of Payne–Pólya–Weinberger, Hile–Protter, and
H.C. Yang and provides a Yang type strengthening of Hook’s
bounds for various elliptic operators with Dirichlet boundary
conditions. The proof avoids the introduction of the “free
parameters” of many previous authors and relies on earlier
works of Ashbaugh and Benguria, and, especially, Harrell
(alone and with Michel), in addition to those of the other
authors listed above. The Yang type inequality is proved to
be stronger under general conditions on the operator and the
auxiliary operators. This approach provides an alternative
route to recent results obtained by Harrell and Stubbe.

1. Introduction

There has been much work dedicated to extending and strengthening the
classical gap inequality of Payne, Pólya, and Weinberger [28], [29] (see also
[2], [4], [5], [6], [7], [34]). This result states that

λm+1 − λm ≤ 4
n

∑m
i=1 λi

m
,(1.1)

where 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · designate the eigenvalues of the membrane
problem (multiplicities included)

−∆u = λu in Ω,(1.2)
u = 0 on ∂Ω.

The set Ω ⊂ Rn is a bounded domain and the Laplacian ∆ is given by
∆ ≡

∑n
i=1 ∂2/∂x2

i .
On the strengthening side we find the work of Hile and Protter [21], who

showed that

mn

4
≤

m∑
i=1

λi

λm+1 − λi
.(1.3)
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We also find the work of H.C. Yang [35] (see also [2], [3], [8]), who showed
that

m∑
i=1

(λm+1 − λi)2 ≤
4
n

m∑
i=1

λi(λm+1 − λi).(1.4)

Harrell and Stubbe [20] extended this inequality further to
m∑

i=1

(λm+1 − λi)p ≤ 2p

n

m∑
i=1

λi(λm+1 − λi)p−1 for p ≥ 2(1.5)

(inequality (14) in Thm. 9, p. 1805) and
m∑

i=1

(λm+1 − λi)p ≤ 4
n

m∑
i=1

λi(λm+1 − λi)p−1 for p ≤ 2(1.6)

(inequality (11) in Thm. 5, p. 1801). The Hile–Protter and H.C. Yang
inequalities appear as special cases of this latter inequality for p = 0 and 2
respectively. It can be shown, however, that (1.6) for p < 2 is always weaker
than (1.4) (i.e., the p = 2 case of (1.6)). In fact, the bounds (1.6) can be
shown to improve monotonically with p (see [10]).

These inequalities are called universal because they do not involve domain-
dependencies [31] (see also [2], [3], for example).

As extensions of the classical PPW and HP results we find applications of
the methods to various geometric and physical situations. Cheng [14] pro-
duced the first estimates of this type for a compact hypersurface minimally
immersed in Rn+1. He also treated the case of an inhomogeneous membrane
and subdomains of S2. P.C. Yang and S.-T. Yau [36] produced similar es-
timates for a hypersurface minimally immersed in Sn. Li [26] treated the
case of compact homogeneous spaces. Leung [25] corrected the constants in
Yang and Yau’s PPW type bound and produced an HP like version of their
work in the spirit of Li’s estimate in [26] (see also [18]).

It was Harrell and Davies (see [16]) who first realized that many of the
original PPW arguments rely on facts involving operators, their commuta-
tors, and traces. In 1988, Harrell [16] first published a fully “algebraicized”
version of the PPW argument. Then in 1993, using projections [17], he
produced bounds on the eigenvalue gap for the Dirichlet problem for subdo-
mains of a given Riemannian manifold in terms of their geometry. Harrell
and Michel [18], [19] produced an algebraic inequality based on two sets
of auxiliary operators and a set of spectral projections. They applied their
formula to produce various geometric inequalities and bounds for partial dif-
ferential operators. Their work improved earlier bounds of Harrell [16], [17].
They also significantly improved and simplified the bounds of Cheng [14]
(see [27] where the results are displayed explicitly), Li [26], Yang and Yau
[36], and Leung [25]. Their HP type inequalities appear in the “natural”
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form described above. At the heart of Harrell and Michel’s improvement
appears the exploitation of certain symmetry and commutation properties
of the eigenfunctions and eigenvalues. Parallel considerations in the spirit
of [5] (see also [4]) were used by the authors [9] to produce new domain-
dependent versions of (1.1), (1.3), and (1.4). Ideas along these lines were
also used by Lee [24] to produce HP type bounds for the eigenvalues of the
Laplace–Beltrami operator on p-forms. These bounds extend and general-
ize the results of Cheng [14] and Yang and Yau [36]. They are extrinsic,
meaning they depend on a curvature operator appearing in the Weitzenböck
formula and a mean curvature vector field. The domains in Lee’s work are
not minimally immersed, but only immersed in Rn+1 or Sn isometrically.

Harrell and Michel’s approach is similar in spirit to that of Hook [23],
though they used a somewhat different method of proof. Hook, for his part,
generalized the original argument of Hile and Protter [21] in an abstract
setting and was able to reproduce their result and improve on results of Hile
and Yeh [22] in the context of the biharmonic operator with Dirichlet bound-
ary conditions. He applied his abstract framework to various operators of
mathematical physics and produced HP type bounds for them (Schrödinger
operators with magnetic potential, second-order elliptic operators with con-
stant coefficients, the Sturm–Liouville problem, the Lamé system). We have
recently found a new proof [12] of his results that avoids Hile and Protter’s
“free parameters” and allows us to develop his conclusions in a fashion par-
alleling that of the present work.

In this article, we produce a set of algebraic inequalities from which the
classical inequalities of Payne, Pólya, and Weinberger, Hile and Protter, and
H.C. Yang described earlier follow.

A self-adjoint semibounded operator is given and we study its eigenvalues.
A set of auxiliary symmetric operators is introduced. Various inequalities
relating the eigenvalues to commutators and projections are proved.

Here, we use one set of auxiliary operators to produce many of Hook’s
results, and do without the projections of Harrell et al. We use solely the
Rayleigh–Ritz principle and properties of commutators. Using this method
we are able to improve on and generalize recent work by Harrell and Stubbe
[20].

The approach we present here has a “unifying” aspect. The extensions of
Hile–Protter and H.C. Yang will be proved to follow— save for the addition
of a key idea — from the same set of principles as the original PPW inequal-
ity. New proofs for the HP and H.C. Yang inequalities, in their abstract
setting, are provided. These inequalities can be seen as conditions that cer-
tain discriminants be nonpositive [12]. We also prove that both of Yang’s
inequalities (see [2], [3]) are stronger than both the PPW and HP results,
thus supplying an argument left aside in [35]. An alternative proof of this
latter result appears in [3] but our proof here is simpler and more direct.
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Our work follows the spirit of [2] and [3]. In these works one of us (MSA)
produced an argument partially based on the work of H.C. Yang [35], which
does away with the “free parameters” of Hile–Protter [21] and Hook [23] (see
also [31], [32]). Ashbaugh and Benguria produced the earliest “parameter-
free” proof of the HP inequality in [7]. We recommend the article [2] where a
discussion of the history is presented and an explicit version for the Dirichlet
Laplacian of some of the arguments we generalize here is laid out (see also
[6] for more results and conjectures).

In [9], we present versions of domain-dependent estimates of a related
type. Then in [10] we develop the Harrell–Stubbe type inequalities given
above in the spirit of this abstract formulation. In particular, we show that
(1.5) is weaker than H.C. Yang’s (1.4) if p is restricted to integer values
p > 2. We also show that (1.6) is intermediate between the H. C. Yang and
Hile–Protter inequalities and interpolates between them for 0 ≤ p ≤ 2. In
our work we adopt much of the notation of Hook in [23].

Our abstract formulation allows for Yang type and Harrell–Stubbe type
improvements for the various physical and geometric problems described
above. This is presented in [11], where we improve on Harrell and Michel’s
works [18], [19], and Hook’s work [23]. In that article, we adopt the point
of view of Bandle [13] to produce Yang type inequalities for eigenvalues of
domains in S2 and H2 to improve results in [14], [17], [18], [19] by treating
the eigenvalue problem in these space forms as inhomogeneous membrane
problems.

2. The classical inequalities with one set of auxiliary operators

Let H be a complex Hilbert space with inner product 〈 , 〉, A : D ⊂ H → H
a self-adjoint operator defined on a dense domain D that is bounded below
and has a discrete spectrum λ1 ≤ λ2 ≤ λ3 ≤ · · · ,

{Bk : A(D) → H}N
k=1

a collection of symmetric operators leaving D invariant, and {ui}∞i=1 the nor-
malized eigenvectors of A, ui corresponding to λi. We may further assume
that {ui}∞i=1 is an orthonormal basis for H. [A,B] denotes the commutator
of two operators defined by [A,B] = AB −BA, and ‖u‖ =

√
〈u, u〉.

Let

ρi =
N∑

k=1

〈
[A,Bk]ui, Bkui

〉
(2.1)

and

Λi =
N∑

k=1

∥∥[A,Bk]ui

∥∥2
.(2.2)
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The following is motivated by the classical PPW, HP, and H.C. Yang in-
equalities. We will show that they spring from these inequalities and the
general set-up of this theorem.

Theorem 2.1. The eigenvalues λi of the operator A satisfy the inequalities
m∑

i=1

ρi ≤
∑m

i=1 Λi

λm+1 − λm
,(2.3)

m∑
i=1

ρi ≤
m∑

i=1

Λi

λm+1 − λi
,(2.4)

and
m∑

i=1

(λm+1 − λi)2ρi ≤
m∑

i=1

(λm+1 − λi)Λi.(2.5)

The proof of this theorem will be given in Section 3.

Remark. Roughly speaking, the quantities Λi are analogues of the kinetic
energy term corresponding to the eigenstate ui. Since {ui}∞i=1 is complete,
one can write, using Parseval’s decomposition

[A,Bk]ui =
∞∑

j=1

bk
ijuj(2.6)

where bk
ij =

〈
[A,Bk]ui, uj

〉
. This implies that

∥∥[A,Bk]ui

∥∥2 =
∞∑

j=1

∣∣〈[A,Bk]ui, uj〉
∣∣2,

or yet

Λi =
N∑

k=1

∞∑
j=1

∣∣〈[A,Bk]ui, uj〉
∣∣2.(2.7)

When A is a Dirichlet Laplacian or a Schrödinger operator with magnetic
potential, (2.7) reduces to Equation (5) on p. 1798 of [20] with a factor of 4,
i.e.,Λi = 4Ti, the kinetic energy term in Harrell and Stubbe’s notation (the
quantity

∣∣〈[A,Bk]ui, uj〉
∣∣2 is similar to Tkij in their notation). Identity (2.7)

is exploited in [10] to produce an alternative route to some of the results of
[20].

Lemma 2.2. The quantity ρi can be written in the simpler form

ρi =
1
2

N∑
k=1

〈
[Bk, [A,Bk]]ui, ui

〉
.(2.8)
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Proof. For A,B as introduced above and u an eigenvector ui of A, one has〈
[B, [A,B]]u, u

〉
=

〈
B[A,B]u, u

〉
−

〈
[A,B]Bu, u

〉
(2.9)

=
〈
[A,B]u, Bu

〉
+

〈
Bu, [A,B]u

〉
= 2Re

〈
[A,B]u, Bu

〉
= 2

〈
[A,B]u, Bu

〉
,

since 〈
[A,B]u, Bu

〉
= 〈ABu, Bu〉 − 〈BAu, Bu〉(2.10)

=
〈
A(Bu), (Bu)

〉
− λ〈Bu, Bu〉

is clearly real by the self-adjointness of A and the fact that u is an eigenvector
of A (in the above, we have taken, Au = λu, and λ, as an eigenvalue of A,
is necessarily real). Lemma 2.2 follows in view of (2.9) and the definition
of ρi. �

Lemma 2.3. Let A = −
∑N

k=1 T 2
k where the Tk’s are skew-symmetric with

domains D(Tk) such that Tk(D) ⊂ D(Tk) and D(Tk) ⊃ D(A) = D. If
[T`, Bk]u = δ`ku, for a vector u, then [A,Bk]u = −2Tku and [Bk,

[
A,Bk]

]
u =

2u.

Proof. By the formal commutator identity [A,BC] = B[A,C]+[A,B]C, one
has

[A,Bk]u = −
N∑

`=1

[T 2
` , Bk]u =

N∑
`=1

[Bk, T
2
` ]u(2.11)

=
N∑

`=1

(
T`[Bk, T`] + [Bk, T`]T`

)
u = −2

N∑
`=1

δ`kT`u = −2Tku.

Therefore, [
Bk, [A,Bk]

]
u = −2 [Bk, Tk]u = 2u,(2.12)

and the desired result follows. �

We now conclude the generalization of the classical results.

Corollary 2.4. If A = −
∑N

k=1 T 2
k , where the Tk’s are skew-symmetric with

domains as delineated above, and if [T`, Bk]u = δ`ku for u an eigenvector of
A, then ρi = N , Λi = 4λi, and

λm+1 − λm ≤ 4
Nm

m∑
i=1

λi,(2.13)

Nm

4
≤

m∑
i=1

λi

λm+1 − λi
,(2.14)
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and
m∑

i=1

(λm+1 − λi)2 ≤
4
N

m∑
i=1

(λm+1 − λi)λi.(2.15)

If C is a symmetric operator and α ∈ R, we write C ≥ α if 〈Cu, u〉 ≥
α〈u, u〉 for all vectors u ∈ D(C). We define A ≥ B for symmetric operators
A and B which are bounded below if D(A) ⊂ D(B) and A−B ≥ 0 on D(A).

Theorem 2.5. Suppose there exist γ, β such that

0 < γ ≤
[
Bk, [A,Bk]

]
(2.16)

and

−
N∑

k=1

[Bk, A]2 ≤ βA.(2.17)

Then

λm+1 − λm ≤ 2β

mNγ

m∑
i=1

λi,(2.18)

mNγ

2β
≤

m∑
i=1

λi

λm+1 − λi
,(2.19)

and
m∑

i=1

(λm+1 − λi)2 ≤
2β

Nγ

m∑
i=1

(λm+1 − λi)λi.(2.20)

Proof. By virtue of (2.16) and (2.17), ρi ≥ 1
2Nγ and Λi ≤ βλi. �

3. Proof of Theorem 2.1

Let φ be a trial function for λm+1 in the Rayleigh–Ritz inequality. Then

λm+1 ≤
〈Aφ, φ〉
〈φ, φ〉

(3.1)

and

〈φ, uj〉 = 0(3.2)

for j = 1, . . . ,m.
Let φ be given by

φi = Bui −
m∑

j=1

aijuj ,(3.3)
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where B is one of the Bk’s, k = 1, . . . , N . Condition (3.2) makes aij =
〈Bui, uj〉. Since B is symmetric, we have aji = aij . Moreover,

‖φi‖2 = 〈Bui, φi〉,(3.4)

and

〈Aφi, φi〉 =
〈

ABui −
m∑

j=1

aijλjuj , φi

〉
= 〈ABui, φi〉(3.5)

= 〈BAui, φi〉+
〈
[A,B]ui, φi

〉
= λi〈Bui, φi〉+

〈
[A,B]ui, φi

〉
= λi〈φi, φi〉+ 〈[A,B]ui, φi〉.

Thus, (3.1) reduces to

λm+1 − λi ≤
〈[A,B]ui, φi〉
〈φi, φi〉

.(3.6)

Now 〈
[A,B]ui, φi

〉
=

〈
[A,B]ui, Bui

〉
−

m∑
j=1

aij

〈
[A,B]ui, uj

〉
.(3.7)

Let bij =
〈
[A,B]ui, uj

〉
. Then

〈
[A,B]ui, φi

〉
=

〈
[A,B]ui, Bui

〉
−

m∑
j=1

aijbij .(3.8)

We now observe that

bij = −bji = (λj − λi)aij .(3.9)

This is evident from

bij =
〈
[A,B]ui, uj

〉
= 〈ABui, uj〉 − 〈BAui, uj〉(3.10)

= 〈Bui, Auj〉 − 〈BAui, uj〉 = (λj − λi)〈Bui, uj〉 = (λj − λi)aij .

Therefore, 〈
[A,B]ui, φi

〉
=

〈
[A,B]ui, Bui

〉
−

m∑
j=1

(λj − λi)|aij |2.(3.11)

Lemma 3.1 (“Optimal” Cauchy–Schwarz). With the notation and choice
of φi as given above, we have〈

[A,B]ui, φi

〉
〈φi, φi〉

≤
∥∥[A,B]ui

∥∥2 −
∑m

j=1 |bij |2〈
[A,B]ui, φi

〉 .(3.12)
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Proof. Since 〈uj , φi〉 = 0, for 1 ≤ i, j ≤ m and
〈
[A,B]ui, φi

〉
is real (by the

self-adjointness of A; see, for example, (3.11) or (3.6)) we have(
〈[A,B]ui, φi〉

)2 =
(〈

[A,B]ui −
m∑

j=1

bijuj , φi

〉)2

≤
∥∥∥∥[A,B]ui −

m∑
j=1

bijuj

∥∥∥∥2

‖φi‖2

=
(
‖[A,B]ui‖2 −

m∑
j=1

|bij |2
)
‖φi‖2.

Hence, noting that 〈[A,B]ui, φi〉 ≥ 0 (by (3.6), for example), we get the
result. �

Remark. Written in more explicit terms, (3.10) reads〈
[A,B]ui, uj

〉
= (λj − λi)〈Bui, uj〉.(3.13)

Domain considerations aside, this gap formula is at the heart of many good
estimates for eigenvalues [16], [19]. Hence the coefficient bij is “natural”
in this context. It is the incorporation of the “counterterms” involving the
bij ’s that makes the use of the Cauchy–Schwarz inequality to obtain (3.12)
“optimal”. If these counterterms are dropped both the PPW and HP results
are obtained (see (3.18) and (3.20) below). The orthogonality of the φi’s
to the uj ’s is what allows us to include these counterterms. As remarked
above in (2.6), the bij ’s are precisely the components of [A,B]ui along the
uj . This choice of components is optimal for minimizing the norm of any
expression of the form [A,B]ui−

∑m
j=1 cjuj . This can be regarded as the key

element that allows us to derive Yang’s strengthened version of the classical
inequalities, explaining our designation “optimal use of the Cauchy–Schwarz
inequality” in connection with our method. This approach was first noted in
preliminary form by Ashbaugh and Benguria [8]. Yang’s derivation [35] is
more circuitous, and in particular does not make explicit use of this crucial
element of our proof. A full explanation of the method appeared first in
Ashbaugh [2] (see also [3], [9]).

Corollary 3.2. Under the assumptions of the problem, the following in-
equality holds:

(λm+1 − λi)
(
〈[A,B]ui, Bui〉 −

m∑
j=1

(λj − λi)|aij |2
)

(3.14)

≤ ‖[A,B]ui‖2 −
m∑

j=1

(λj − λi)2|aij |2.

Proof. Start with (3.6), and use Lemma 3.1 along with (3.9) and (3.11). �
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Since B is one of the Bk’s, aij = ak
ij . Let

Aij ≡
N∑

k=1

|ak
ij |2.(3.15)

We have Aij = Aji ≥ 0. Summing (3.14) over k, for 1 ≤ k ≤ N , and
incorporating the definitions of ρi, Λi, and Aij , we get

(λm+1 − λi)
(

ρi −
m∑

j=1

(λj − λi)Aij

)
≤ Λi −

m∑
j=1

(λj − λi)2Aij .(3.16)

By dropping the last term on the right-hand side, one has

(λm+1 − λi)
(

ρi −
m∑

j=1

(λj − λi)Aij

)
≤ Λi.(3.17)

Remark. The quantity ρi −
∑m

j=1 (λj − λi)Aij ≥ 0 by virtue of (3.6) (see
also (3.11)).

The General PPW Bound for λm+1 − λm. From (3.17), we pass to

(λm+1 − λm)
(

ρi −
m∑

j=1

(λj − λi)Aij

)
≤ Λi.(3.18)

Summing over i = 1, . . . ,m yields (2.3). The double sum
m∑

i=1

m∑
j=1

Aij(λj − λi)(3.19)

vanishes by antisymmetry.

The Hile–Protter Bound. We rewrite (3.17) as

ρi −
m∑

j=1

(λj − λi)Aij ≤
Λi

λm+1 − λi
.(3.20)

Summing on i, 1 ≤ i ≤ m, yields (2.4).

The H.C. Yang Bound. We rewrite (3.16) as

(λm+1 − λi)ρi ≤ Λi +
m∑

j=1

(λm+1 − λj)(λj − λi)Aij .(3.21)

Multiplying by (λm+1−λi) and summing on i yields (2.5). The double sum
m∑

i=1

m∑
j=1

(λm+1 − λi)(λm+1 − λj)(λj − λi)Aij(3.22)

vanishes by antisymmetry.
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4. The case of a Schrödinger like operator

Let H = A + V be an operator defined on D ⊂ H, where A and V are self-
adjoint operators, A = −

∑N
k=1 T 2

k , and the Tk’s are skew-symmetric with
domains Tk(D) satisfying Tk(D) ⊂ D(Tk) and D(V ) ⊃ D(Tk) ⊃ D(A) ≡ D.
The operator H is modeled after the Schrödinger operator. We assume that
the spectrum of H is discrete consisting of eigenvalues λ1 ≤ λ2 ≤ · · · , and we
let {ui}∞i=1 be a complete orthonormal basis of eigenvectors corresponding
to {λi}∞i=1. We take a family of symmetric operators {Bk : H(D) → H}N

k=1
that leave D invariant, such that [T`, Bk]ui = δ`kui. The quantities ρi and
Λi are given by

ρi =
N∑

k=1

〈
[H,Bk]ui, Bkui

〉
and Λi =

N∑
k=1

∥∥[H,Bk]ui

∥∥2
.

In obvious notation we write ρi = ρA
i + ρV

i , corresponding to the decompo-
sition H = A + V . We have the following generalization of Corollary 2.4.

Theorem 4.1. Suppose [V,Bk] = 0 for 1 ≤ k ≤ N . Then ρi = N , Λi =
4
(
λi − 〈V ui, ui〉

)
, and

λm+1 − λm ≤ 4
Nm

m∑
i=1

(
λi − 〈V ui, ui〉

)
,(4.1)

Nm

4
≤

m∑
i=1

λi − 〈V ui, ui〉
λm+1 − λi

,(4.2)

m∑
i=1

(λm+1 − λi)2 ≤
4
N

m∑
i=1

(λm+1 − λi)
(
λi − 〈V ui, ui〉

)
.(4.3)

Proof. For [V,Bk] = 0, ρV
i = 0. Therefore ρi = ρA

i = N , by Corollary 2.4.
For an eigenvector u, [H,Bk]u = [A,Bk]u = −2Tku, by Lemma 2.3. Hence,∥∥[H,Bk]ui

∥∥2 = 4‖Tkui‖2

and

Λi =
N∑

k=1

∥∥[H,Bk]ui

∥∥2= 4
N∑

k=1

‖Tkui‖2(4.4)

= 4

〈
N∑

k=1

−T 2
k ui, ui

〉
= 4〈Aui, ui〉

= 4〈(H − V )ui, ui〉 = 4
(
λi − 〈V ui, ui〉

)
.

The result then follows from previous considerations. �
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Remark. Suppose V ≥ M > 0. Then the theorem reduces to

λm+1 − λm ≤ 4
Nm

m∑
i=1

(
λi −M

)
,(4.5)

Nm

4
≤

m∑
i=1

λi −M

λm+1 − λi
,(4.6)

m∑
i=1

(λm+1 − λi)2 ≤
4
N

m∑
i=1

(
λm+1 − λi

)(
λi −M

)
.(4.7)

Therefore, the classical PPW, HP, and H.C. Yang inequalities (without M)
hold with strict inequalities. This fact (and more) was noted by Ashbaugh
and Benguria [7] for the Hile–Protter type inequality and was first observed
in the case of the Payne–Pólya–Weinberger inequality by Allegretto [1],
Harrell [unpublished] (in [16] the PPW type inequality (4.1) is interpreted
as a family of pointwise bounds for the potential V ), and Singer, Wong,
Yau, and Yau [33]. Hook [23] gives the HP type results applying to various
second-order elliptic operators. The Yang type bound (4.7) is stronger than
that proved in [20] though we essentially use the same assumptions (see
Theorem 1 and Theorem 5 therein).

5. Comparing the bounds

In this section, we are interested in comparing the bounds on λm+1 that arise
from each of the three classical inequalities of Payne–Pólya–Weinberger,
Hile–Protter, and H. C. Yang, including some simpler variants of these
bounds. In his paper, H. C. Yang [35] stated that the inequality he ob-
tained implied that of an “averaged” version of PPW that in turn implied
that of Hile–Protter (which is known to imply the classical PPW inequal-
ity). However, while the first point is clear, he did not give specifics for the
remaining points, so we find it instructive to do so here. We will in fact
provide a proof valid for the general setting of this work, with applicability
to the Laplacian and various other operators. Similar methods were used in
[10] to treat the Harrell–Stubbe type inequalities given as (1.5) and (1.6).
H.C. Yang’s inequality will be proved to be the strongest of the existing
classical universal inequalities.

Throughout this section, we assume that the operators A and Bk, for
1 ≤ k ≤ N , satisfy the conditions (2.16) and (2.17), namely

γ ≤ [Bk, [A,Bk]] and −
N∑

k=1

[Bk, A]2 ≤ βA
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for some β, γ > 0. For simplicity we set

λ =
∑m

i=1 λi

m
.

We let

σPPW = λm +
2β

mNγ

m∑
i=1

λi = λm +
2β

Nγ
λ.(5.1)

We define

gm(σ) =
m∑

i=1

λi

σ − λi
,(5.2)

and, for a fixed index `, 1 ≤ ` ≤ m,

g̃m`(σ) =
∑̀
i=1

λi

σ − λ`
+

m∑
i=`+1

λi

σ − λm
.(5.3)

We define σHP to be the unique solution of the equation

gm(σ) =
mNγ

2β
(5.4)

and σ̃HP,` the unique solution of

g̃m`(σ) =
mNγ

2β
,(5.5)

both on (λm,∞).
The uniqueness of σHP and σ̃HP,` follows from the monotonicity of gm(σ)

and g̃m`(σ), respectively, both of which decrease from ∞ to zero as σ varies
on (λm,∞). Since gm(σHP) = g̃m`(σ̃HP,`) and gm(σ)≤ g̃m`(σ) for all σ > λm,
we obtain g̃m`(σ̃HP,`) ≤ g̃m`(σHP) from which we have σHP ≤ σ̃HP,` (since
g̃m` is decreasing). Hence σ̃HP,` is an upper estimate for σHP. On the other
hand, since, by Theorem 2.5, gm(σHP)≤ gm(λm+1), we have λm+1 ≤ σHP. In
fact σ̃HP,` is given explicitly by

σ̃HP,` =
λm + λ`

2
+

β

Nγ
λ(5.6)

+
((λm − λ`

2
+

β

Nγ
λ
)2
− 2β

mNγ
(λm − λ`)

∑̀
i=1

λi

)1/2

.

Obviously, the case ` = m gives us the bound σ̃HP,m = σPPW, which is thus
weaker than σHP.
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Next we set

hm(σ) =
m∑

i=1

(σ − λi)2 −
2β

Nγ

m∑
i=1

(σ − λi)λi(5.7)

= mσ2 − 2
(
1 +

β

Nγ

)( m∑
i=1

λi

)
σ +

(
1 +

2β

Nγ

) m∑
i=1

λ2
i ,

and let σ±Y denote the two roots of the quadratic equation hm(σ) = 0 (that
hm(σ) has two real roots follows from the fact that hm(λm+1) ≤ 0 and

lim
σ→∞

hm(σ) = ∞

(see Prop. 6, p. 1802 of [20] for an alternative proof of this fact)). We have

σ±Y =
(
1 +

β

Nγ

)
λ±

(((
1 +

β

Nγ

)
λ
)2
−

(
1 +

2β

Nγ

) 1
m

m∑
i=1

λ2
i

)1/2

,(5.8)

which can be rewritten in the form

σ±Y =
(
1 +

β

Nγ

)
λ±

(( β

Nγ
λ
)2
−

(
1 +

2β

Nγ

) 1
m

m∑
i=1

(λi − λ)2
)1/2

.(5.9)

Clearly,

σ+
Y ≤ σ̃Y ,

where

σ̃Y ≡
(
1 +

2β

Nγ

)
λ.(5.10)

Since hm(λm+1) ≤ 0, we conclude that σ−Y ≤ λm+1 ≤ σ+
Y . Also, since

hm(λm) = hm−1(λm) ≤ 0,

we have σ−Y ≤ λm (the quadratic hm(σ) is negative between its roots σ±Y ).
The σ+

Y bound on λm+1 gives

λm+1 ≤ σ̃Y .(5.11)

Inequality (5.11) can be written in the form

Nγ

2β
≤ λ

λm+1 − λ
.(5.12)

The function f(x) =
x

λm+1 − x
is convex on (0, λm+1) since

f ′′(x) = 2λm+1(λm+1 − x)−3 > 0 for x < λm+1.

Hence,

f(λ) = f

(
1
m

m∑
i=1

λi

)
≤ 1

m

m∑
i=1

f(λi)
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and thus (from (5.12))

mNγ

2β
≤

m∑
i=1

λi

λm+1 − λi
,(5.13)

from which we conclude that Yang’s weaker bound implies the statement
of the HP bound. An elementary proof of the fact that σ̃Y ≤ σHP will be
given in the proof of Theorem 5.2 below.

Remark. These calculations show, as in the case of the Dirichlet Laplacian
[35], that the generalized H.C. Yang inequality implies that of Hile–Protter,
which in turn implies that of Payne–Pólya–Weinberger.

We now prove a lemma which we will need for the next theorem.

Lemma 5.1 (Reverse Chebyshev Inequality). Suppose {ai}m
i=1 and {bi}m

i=1
are two real sequences with {ai} increasing and {bi} decreasing. Then the
following inequality holds:

m∑
i=1

ai

m∑
i=1

bi ≥ m

m∑
i=1

aibi.(5.14)

Proof. We use the simplified notation∑
a =

m∑
i=1

ai,
∑

b =
m∑

i=1

bi,
∑

ab =
m∑

i=1

aibi.

Starting with the fact that
(
ai− aj

)(
bi− bj

)
≤ 0 for i, j = 1, . . . ,m, we sum

over both indices to arrive at

0 ≥
∑

i

∑
j

(
ai − aj

)(
bi − bj

)
(5.15)

=
∑

i

∑
j

(
aibi − aibj − ajbi + ajbj

)
= m

∑
i

aibi −
∑

i

ai

∑
j

bj −
∑

j

aj

∑
i

bi + m
∑

j

ajbj

= 2
(
m

∑
ab−

∑
a

∑
b
)

,

from which the result is immediate. �

Remark. A weighted version of this inequality can also be proved. See, for
example, p. 43 of [15].

Theorem 5.2.

σ−Y ≤ λm ≤ λm+1 ≤ σ+
Y ≤ σ̃Y ≤ σHP ≤ σ̃HP,` ≤ σPPW.(5.16)
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Proof. That σ−Y ≤ λm ≤ λm+1 ≤ σ+
Y and σHP ≤ σ̃HP,` have already been

proved in the previous discussion. That σ+
Y ≤ σ̃Y follows from the definitions

of σ+
Y and σ̃Y (Equations (5.9) and (5.10)). That σ̃HP,` ≤ σPPW is an

immediate consequence of (5.6). To complete the chain of inequalities we
just need to prove that σ̃Y ≤ σHP. This is equivalent to showing that

gm(σ̃Y ) ≥ gm(σHP)

(since gm is decreasing). From (5.10), we have

Nγ

2β
=

λ

σ̃Y − λ
.(5.17)

Since

gm(σHP) =
mNγ

2β
,

we simply need to prove that
m∑

i=1

λi

σ̃Y − λi
≥ mNγ

2β
.(5.18)

Using (5.17) and incorporating the definition of λ, this is equivalent to show-
ing that

m∑
i=1

λi

σ̃Y − λi
≥

m
∑m

i=1 λi∑m
i=1 (σ̃Y − λi)

,(5.19)

or
m∑

i=1

λi

σ̃Y − λi

m∑
i=1

(σ̃Y − λi) ≥ m
m∑

i=1

λi.(5.20)

The sequence ai =
λi

σ̃Y − λi
is increasing, while bi = σ̃Y − λi is decreasing.

The result of the theorem then follows by applying Lemma 5.1.

Corollary 5.3.

σ+
Y ≤ σHP.

The result is an obvious consequence of Theorem 5.2. We argue below
that this statement can be directly proven without recourse to the inter-
mediate inequalities σ+

Y ≤ σ̃Y and σ̃Y ≤ σHP. Since gm(σ) is decreasing,
the statement would follow from the inequality gm(σ+

Y ) ≥ gm(σHP). Since
gm(σHP) = mNγ/(2β), the statement is equivalent to

gm(σ+
Y ) ≥ mNγ

2β
.(5.21)
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But h(σ+
Y ) = 0, i.e.,

m∑
i=1

(σ+
Y − λi)2 =

2β

Nγ

m∑
i=1

(σ+
Y − λi) λi.(5.22)

Hence, eliminating 2β/(Nγ), (5.21) is equivalent to
m∑

i=1

λi

σ+
Y − λi

≥
m

∑m
i=1 (σ+

Y − λi) λi∑m
i=1 (σ+

Y − λi)2
,(5.23)

or
m∑

i=1

λi

σ+
Y − λi

m∑
i=1

(σ+
Y − λi)2 ≥ m

m∑
i=1

(σ+
Y − λi) λi.(5.24)

The sequence ai = λi/(σ+
Y −λi) is increasing, while bi = (σ+

Y −λi)2 is decreas-
ing and hence statement (5.24) is true by Lemma 5.1, and the alternative
proof of the corollary is complete. �
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