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Abstract. We review upper and lower bound isoperimetric properties of the
fundamental eigenfunction of the Dirichlet Laplacian and announce new re-
verse Hölder type inequalities for norms of this function in the case of a wedge-
like membrane.
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2 N. GAMARA, A. HASNAOUI, AND L. HERMI

1. Introduction

The following article serves two purposes. In the first instance, we review vari-
ous isoperimetric mean-to-peak ratio inequalities and related inequalities estimating
various norms of the fundamental mode of vibration of the fixed membrane prob-
lem. We also announce recent improvements in the case of a wedge-like membrane.
Salient features that go into the proof of these inequalities, and some known exten-
sions, will be highlighted.

To fix the notation, we let Ω ⊂ R
d, and consider the first eigenfunction of the

Dirichlet Laplacian and its associated eigenvalue, which we will denote respectively
by u and λ > 0. This problem is described by

Δu+ λu = 0 in Ω(1.1)

u = 0 on ∂Ω.

It is well known that u can be taken to be positive. We are interested in sharp
isoperimetric inequalities relating the various norms ‖u‖∞ = ess sup u (which we
will denote sometimes as umax), ‖u‖p, ‖u‖q (for q ≥ p > 0) to the eigenvalue λ
and underlying geometric features such as volume |Ω| and surface area |∂Ω|. Here

‖u‖m =
(∫

Ω
um dx

)1/m
.

The oldest result we are aware of is attributed in the work of Titchmarsh (1958)
to Minakshisundaram (1942) (see p. 190 of [44]) who proved that ∃C such that

(1.2) ‖u‖∞ ≤ Cλ(d−1)/4,

under the normalizing condition ‖u‖2 = 1. Minakshisundaram’s proof uses an
asymptotic technique reminiscent of the work of Titchmarsh which will not be
discussed further.

Properly defined, mean-to-peak ratio for the fundamental eigenfunction of the
Dirichlet Laplacian was first defined by Payne and Stakgold [37, 43, 55] as

E =

∫
Ω
u dx

|Ω|umax

in the context of shape optimization for a nuclear reactor operating at criticality.
Indeed, for a homogeneous, monoenergetic, critical reactor, the neutron density, u,
is the first eigenfunction of the Dirichlet Laplacian described in (1.1). The phys-
ical motivation offered [37] for studying its properties is that high mean-to-peak
neutron density ratio guarantees adequate average power output without exceed-
ing the maximum temperature due to metallurgical considerations. Schaefer and
Sperb [49, 50] call this quantity “neutron density ratio”. Sperb [52] simply calls it
“efficiency ratio”. We are interested in both upper and lower isoperimetric bounds
for this ratio, and more generally for ratios of the form

‖u‖q
‖u‖p

where q ≥ p > 0. This includes the case q = ∞. Rather than expressing known
results in terms of E, we will simply write them in terms of u and λ.

Bounds for such ratios emulate two well-known classical isoperimetric inequali-
ties, namely the Rayleigh-Faber-Krahn inequality [7, 42] and the Makai-Pólya in-
equality [30, 41] (see also [24, 48]). The first states that λ is minimized for the unit

62

Licensed to Univ of Arizona.  Prepared on Tue Jun  2 00:36:38 EDT 2015for download from IP 150.135.115.250.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



MAX-TO-MEAN RATIO ESTIMATES 3

ball in Rd (or unit disk when d = 2) of same volume (or area) as Ω,

(1.3) λ ≥
C

2/d
d j2d/2−1,1

|Ω|2/d

where jd/2−1,1 denotes the first positive zero of the Bessel function Jd/2−1(x) and
Cd the volume of the unit ball. The second, valid when Ω is convex, takes the form

(1.4) λ ≤ π2

4

|∂Ω|2
|Ω|2

with equality occurring, in the limit, for an infinite slab.

2. Payne-Rayner and Payne-Stakgold inequalities

For two dimensional domains, Payne and Rayner proved [34, 35] that for Ω ⊂ R
2

(2.1)
‖u‖22
‖u‖21

≤ λ

4π

with equality for the disk. This is a reverse Hölder inequality. It has the inter-
pretation of being a couched L2 ≥ 4πA classical isoperimetric inequality for the
domain Ω with a conformal metric based on the eigenfunction u (see [12] for de-
tails). The proof of this theorem relies on Schwarz symmetrization (or decreasing
rearrangement), the Faber-Krahn inequality, and the classical geometric isoperimet-
ric inequality. For background material on these topics, we suggest [4, 7, 11, 42, 57].

Attempting to generalize the Payne-Rayner inequality (2.1), using a new mono-
tonicity principle for an auxiliary problem and rearrangement techniques, Kohler-
Jobin [27, 28] proved several extensions to dimensions d ≥ 2 from which she ob-
tained the corollary

(2.2)
‖u‖22
‖u‖21

≤ λd/2

2dCd j
d−2
d/2−1,1

.

Among the many results obtained by Kohler-Jobin [27, 28] we mention the explicit
isoperimetric inequalities (see (2.5) below)

(2.3)
‖u‖∞
‖u‖1

≤ C1(d)λ
d/2

and

(2.4)
‖u‖∞
‖u‖2

≤ C2(d)λ
d/4.

Again, equality holds when Ω is the d-ball. The constants C1(d), C2(d) are ex-
plicit expressions in terms of Bessel functions and their corresponding zeros. Using
Schwarz symmetrization and an ingenious comparison result, Chiti [14, 15] (see also
[3, 7]) was able to circumvent the auxiliary problem developed by Kohler-Jobin and
proved at once

(2.5)
‖u‖q
‖u‖p

≤ K(p, q, d)λ
d
2 (

1
p−

1
q ) for q ≥ p > 0

and

(2.6)
‖u‖∞
‖u‖p

≤ K(p, d)λ
d
2p for p > 0.
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4 N. GAMARA, A. HASNAOUI, AND L. HERMI

Here

K(p, q, d) = (dCd)
1
q−

1
p j

d ( 1
q−

1
p )

d
2−1,1

( ∫ 1

0
rd−1+q(1− d

2 )Jq
d
2−1

(j d
2−1,1 r)dr

) 1
q

( ∫ 1

0
rd−1+p(1− d

2 )Jp
d
2−1

(j d
2−1,1 r)dr

) 1
p

.

Again, these results are isoperimetric, and equality holds when Ω is the unit ball
in Rd, and K(p, d) = limq→∞ K(p, q, d).

Under specific conditions on the domain Ω one can improve some of these results
or provide counterparts. For all convex domains Ω ⊂ Rd, Payne and Stakgold [37]
proved

(2.7)
‖u‖∞
‖u‖1

>
π

2 |Ω| .

The equality sign holds in the limit for an infinite slab. The proof of the Payne
and Stakgold ineq. uses the interior parallels method and does not actually require
the convexity of Ω, but rather that the average curvature of ∂Ω is non-negative. A
weaker version of (2.7), under the same restrictions on Ω states

(2.8)
‖u‖∞
‖u‖1

>

√
λ

|∂Ω| .

These two statements are sharp in the sense that equality is assumed for an infinite
slab. Note that (2.8) follows from (1.4) and (2.7). For a convex domain, Payne and
Stakgold [43] also proved

(2.9)
‖u‖∞
‖u‖2

≥
√

2

|Ω|

and, excising information about the underlying domain,

(2.10) ‖u‖22 ≤ π

4
‖u‖∞ ‖u‖1.

The method of proof uses in an essential way gradient estimates, which follow from
a strong version of the Hopf maximum principle, and rearrangement techniques.
At the suggestion of van den Berg, Payne [32] conjectured that one ought to prove
a bound of the form

(2.11) ‖u‖∞ ≤ F (|Ω|, ‖u‖2)

where F is a function that is independent of the eigenvalue or other geometric
quantities. This would provide a counterpart to (2.9). For a planar domain, Hersch
[23] suggested the conjecture

(2.12)
‖u‖22
‖u‖21

≥ π

4

√
λ

|∂Ω|

which would provide a counterpart to (2.1). Neither a disk, nor a rectangle, both
of which were checked by Hersch, provide extrema for this inequality. Further
information about this ratio for the fundamental mode of vibration can be inferred
when the underlying domain Ω is star-shaped with respect to a point inside Ω ⊂ Rd.
In this case, one can define the pure number of the domain, B, (see [23, 42] in terms

64

Licensed to Univ of Arizona.  Prepared on Tue Jun  2 00:36:38 EDT 2015for download from IP 150.135.115.250.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



MAX-TO-MEAN RATIO ESTIMATES 5

of the “Stützfunktion”, h(ξ) = 〈ξ, n〉, where ξ denotes a point on the boundary ∂Ω
and n the outward normal at ξ, by

B =

∫
∂Ω

1

h(ξ)
dξ.

Based on the Rellich identity [47],∫
∂Ω

h(ξ)

(
∂u

∂n

)2

dξ = 2λ

∫
Ω

u2dx,

For a 2-dimensional star-shaped domain Ω, Pólya and Szegő [42] proved

(2.13) λ ≤ j20,1
B

2|Ω| .

Equality holds if and only if, Ω is a disk centered at the origin. In the same vein,
Crooke and Sperb [16] (see also [23]) proved

(2.14)
‖u‖22
‖u‖21

≥ λ

2B
.

Inequality (2.13) has been recently extended, for a star-shaped domain Ω ⊂ Rd in
[17], to

(2.15) λ ≤ j2d/2−1,1

B

d |Ω| ,

with a proof that circumvents the use of the Rellich identity.
Two-sided bounds in the spirit of the above have been proved by several authors

for generalizations of the above boundary value problem. Payne and Stakgold [43]
considered the nonlinear problem

Δu+ f(u) = 0 in Ω ⊂ R
d(2.16)

u = 0 on ∂Ω

for a given continuous function f(u), with f(0) = 0. This includes problem (1.1)
when f(u) = λu. Existence and uniqueness of positive solutions is laid out in [55]
where a more general Robin boundary condition is also treated. Assuming smooth-
ness conditions on the boundary, strong Hopf maximum principles are developed
for a functional of u, |∇u| which lead to useful pointwise bounds for |∇u| in terms
of u and umax. When coupled with standard rearrangement arguments one is then
led to Payne-Stakgold type inequalities. The results are valid for domains with
nonnegative average curvature at every point of the boundary, which is the case of
convex domains. For this problem, the Payne-Rayner inequality, proved in [16, 36],
takes the form

(2.17)

(∫
Ω

f(u) dx

)2

≥ 8π

∫
Ω

F (u) dx

where F (u) =
∫ u

0
f(t)dt. Payne, Sperb and Stakgold [36] use a different functional

in the Hopf maximum part of the argument, but otherwise similar techniques, to
improve some of the inequalities cited above. This is also the case of the papers of
Shaefer and Sperb [49, 50, 51], and Philippin [40]. One finally points out Sperb’s
work [53] where an auxiliary problem which echoes earlier work by Bandle [5] and
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6 N. GAMARA, A. HASNAOUI, AND L. HERMI

Kohler-Jobin [27, 28] but “interpolates” differently between the torsional and mem-
brane problems on Ω,

Δu+ λ

(
u+ α

∫
Ω

u dx

)
= 0 in Ω(2.18)

u = 0 on ∂Ω

where α is a fixed parameter in (− 1
|Ω| ,∞), has been treated and similar inequalities

for the mean-to-max ratio and different norms of the eigenfunctions were treated.
For example, the Payne Rayner inequality reads

(2.19) ‖u‖22 ≤
(

λ

4π
(1 + α|Ω|)2 − 2α

)
‖u‖21.

In addition to the original papers [34, 35], Payne-Rayner type inequalities are now
part of the standard body of literature on Schwarz symmetrization (symmetric
decreasing rearrangement). Classical works include [14, 15, 25, 26, 31, 57]. Re-
cent work has focused on extensions to non-linear eigenvalue problems [1, 2], on
problems with a Gaussian weight [6], on a larger class of elliptic problems [13], on
free membrane problems (with Neumann conditions) for a class of domains in R

d

with controlled relative isoperimetric content [10], on eigenvalue problems for the
p-Laplacian and pseudo-p-Laplacian [8, 9], on a Hessian eigenvalue problem [19],
on deriving a bound for the pressure integral in a toroidal-plasma equilibrium [61],
or for extracting geometric features for minimal surfaces as is the case in [56, 60].

Based on the results of Chiti [14, 15], van den Berg, [58] was able to prove an
isoperimetric inequality relating ‖u‖∞ to the inradius ρ = max{miny∈∂Ω : |x− y| :
x ∈ Ω} under the usual normalization condition ‖u‖2 = 1:

(2.20) ‖u‖∞ ≤ C(d)ρ−d/2.

Jazzing up the work to a spherical cap in S
d−1 and sending the radius of this

spherical cap to zero, he was led to the following conjecture

(2.21) ‖u‖∞ ≤ C(d)ρ−
1
6−

d
2 D− 1

6

where D denotes the diameter of Ω. This conjecture of van den Berg was motivated
by a counterexample of Kröger to any assertion that [29]

(2.22) ‖u‖∞ ∼ |Ω|−1/2.

Kröger’s counterexample was a wedge Sα = {(r, θ) : 0 < r < (2α/π)1/2, 0 < θ <
π/α}, α ≥ 1 for which |Sα| = 1, but ‖u‖∞ → ∞ as α → ∞. Results in this spirit
appear in [59] but use probabilistic methods.

Pointwise bounds for the size of the eigenfunction have already been established
by Payne and Stakgold [37] who showed, for Ω convex,

(2.23) u(P ) ≤
√
λ ‖u‖∞ d(P, ∂Ω)

and

(2.24) u(P ) ≤
√
λ ‖u‖1

d(P, ∂Ω)

|Ω|
where P designates the point at which u reaches its maximum. These results are
related to work by Grieser and Jerison [22] who obtained estimates for both the
location and size of the maximum value of u for a convex domain Ω ⊂ R2. Their
estimates compare the size and location of the ground state eigenfunction with the
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MAX-TO-MEAN RATIO ESTIMATES 7

size and location of the ground state eigenfunction of an associated one dimensional
Schrödinger operator. Grieser and Jerison have returned recently to this question
for a class of domains that are very special perturbations of a rectangle [21]. We also
note that Grieser [20] proved a universal statement in the same spirit of (1.2), using
the wave equation method, for any eigenfunction of the Laplacian on a compact
manifold with boundary, with Dirichlet or Neumann boundary conditions, also
assuming the normalization ‖u‖2 = 1.

3. Inequalities for wedge-like membranes

Throughout this section, we consider a 2-dimensional domain Ω ⊂ Wα = {(r, θ) :
0 ≤ θ ≤ π/α}, α ≥ 1. In 1960, Payne and Weinberger [38] proved the curious
inequality

(3.1) λ ≥ λ∗ =
(4α(α+ 1)

π

∫
Ω

h2(r, θ)r dr dθ
) −1

α+1

j2α,1

where h = rα sinαθ. Here (r, θ) are polar coordinates taken at the apex of the
wedge, and jα,1 the first zero of the Bessel function Jα(x). Equality holds if and
only if Ω is the circular sector Wα. This inequality improves on the Faber-Krahn
inequality for certain domains (as is the case of certain triangles) and has the
interpretation of being a version of Faber-Krahn in dimension 2α + 2 for solids of
rotation [4, 33]. Note that α need not be an integer. The proof of this inequality
relies on a geometric isoperimetric inequality for the quantity

v0 =

∫
Ω

h2(r, θ)r dr dθ

which is optimized for the sector Wα, and a carefully crafted symmetrization ar-
gument. A counterpart inequality (3.1), involving a sectorial version of the pure
number B, and isoperimetric in the sense that equality holds when Ω = Wα, was
proved by Sperb [54]. In more recent works, the Payne Weinberger inequality was
extended to a wedge on the sphere S2 [45], and to wedges in Rd [46].

The natural question about a Payne-Rayner type inequality for wedge-like do-
main was first addressed by Philippin [39] in 1976 who proved
(3.2)(

2α

π

) 1
α+1

(2α+ 2)−
2α+1
α+1

(∫
Ω

uh rdrdθ
)2

≤ v
α

α+1

0

(α+ 2

α+ 1

1

λ∗ − 1

λ

)∫
Ω

u2 rdrdθ

Equality holds for the sector. This result is one of two possible extensions of
Payne-Rayner suggested in higher dimensions appearing in the original paper [35]
“neither of which is satisfactory”. The second of such “unsatisfactory” inequalities
has been proved by Mossino [31] (see also Kesavan [25, 26]) who proved a weighted
isoperimetric version of (2.1) for domains Ω ⊂ Rd involving quasi-norms in Lorentz
space.

In [18] we showed that

(3.3)

(∫
Ω

uq h2−qrdrdθ

) 1
q

≤ K(p, q, 2α+ 2)λ(α+1)( 1
p−

1
q )

(∫
Ω

uph2−prdrdθ

) 1
p

with K(p, q, 2α+ 2) as given in the Chiti statement (2.5). The proof of (3.3) is an
adaptation of the method of Chiti [14, 15]. As in Payne and Weinberger [38], we
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8 N. GAMARA, A. HASNAOUI, AND L. HERMI

first consider the transformation u = hw. The function w satisfies⎧⎨
⎩

Δw + 1
h 〈∇h,∇w〉+ λw = 0, in Ω ;

∂w
∂n = 0, on Γ1;
w = 0, on Γ2.

where Γ1 = ∂Ω ∩ {θ = 0, π
α}. One then performs rearrangement for functionals of

the form ∫
Ω

wph2dxdy

and develop a Chiti comparison theorem for sectors to complete the proof.
Payne and Stakgold pointed out in [37] that for wedge-like membranes one ought

to be able to improve (2.8). However, this task has not been implemented, to the
best of our knowledge.

References

[1] A. Alberico, A. Ferone, R. Volpicelli, Some properties for eigenvalues and eigenfunctions of
nonlinear weighted problems. Rend. Mat. Appl. 19, 45-63 (1999).

[2] A. Alvino, V. Ferone, G. Trombetti, On the properties of some nonlinear eigenvalues. SIAM

J. Math. Anal. 29, 437-451 (1998).
[3] M. S. Ashbaugh, L. Hermi, On extending the inequalities of Payne, Pólya, and Weinberger
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