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Abstract. In this article we study the estimation of bifurcation coefficients in nonlinear branch-
ing problems by means of Rayleigh–Ritz approximation to the eigenvectors of the corresponding
linearized problem. It is essential that the approximations converge in a norm of sufficient strength
to render the nonlinearities continuous. Quadratic interpolation between Hilbert spaces is used to
seek sharp rate of convergence results for bifurcation coefficients. Examples from ordinary and partial
differential problems are presented.
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1. Introduction. Physical systems which exhibit the phenomenon of bifurca-
tion are widespread, including buckling of rods, plates and shells, chemical kinetics,
formation of binary stars, and a wide variety of fluid mechanical phenomena. The
analysis starts with detection and location of bifurcation points, and initialization of
new branches rooted in the bifurcation points. For boundary value problems, the prob-
lem of proving convergence results for calculating initialization of emerging branches
has received little attention. We study this problem in the context of an analytic
branch emanating from a branch point whose eigenvalue-eigenvector pair must be es-
timated numerically. The problem is then to show that this calculation can be used
to accurately approximate the initialization of the emerging branch. Our approach is
via the ubiquitous Rayleigh–Ritz method.

The most common method for estimation of the lower eigenvalues of a differential
operator is the Rayleigh–Ritz method, or a variant such as finite elements in engineer-
ing problems, or Hartree–Fock in quantum mechanical problems. The emphasis in
many numerical studies is on obtaining accurate eigenvalue approximations in an effi-
cient and cost effective manner. Herein, we explore a different question, namely, is the
calculation useful if needed to estimate a bifurcation coefficient in a nonlinear branch-
ing problem? If the eigenfunctions of the corresponding linearized problem must be
approximated, the strength of the nonlinearity must be considered. In particular, the
eigenfunctions of the linearized problem need to be approximated in a topology strong
enough that nonlinear quantities to be calculated behave continuously. This may or
may not be the case with the standard Rayleigh–Ritz method. We know of one prior
paper on this question [6], in which the nonlinearity is taken to be continuous in the
underlying Hilbert space topology.

Our approach is to introduce a whole scale of Rayleigh quotients using real powers
of the self-adjoint operator which determines the corresponding linearized problem.
This is a version of quadratic interpolation, also called Banach space interpolation
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2988 W. M. GREENLEE AND L. HERMI

between Hilbert spaces. A discrete set of such Rayleigh quotients was called “Schwartz
quotients” in [17] and used to generate a theoretical algorithm for eigenvalue estima-
tion that is closely related to the power method for matrices. We use our somewhat
esoteric construction to seek sharp convergence rate estimates for bifurcation coeffi-
cients. This proceeds by use of eigenfunction estimates in Hilbert space topologies
strong enough for the nonlinear approximation procedure to converge.

In the next section we describe the basic Rayleigh–Ritz method and formulate a
model problem concerning a nonlinear rotating string with variable density. In sec-
tion 3 the scale of Rayleigh quotients is presented, and relevant facts about quadratic
interpolation between closed subspaces of Sobolev spaces determined by homogeneous
boundary conditions are stated. The basic eigenvalue-eigenvector convergence theo-
rem is also presented here, with the proof attached as the appendix. Then in section 4
we prove theorems on spectral implementation of the basic convergence theorem. This
method is known as the spectral Galerkin method in the numerical analysis literature
(cf. [11], [15], [30]). Most of this section can be implemented via finite elements, which
we comment on in section 6. In section 5 we analyze the nonlinear rotating string
problem and present a few numerical results for this problem with a particular density
function. Finally in section 6 we illustrate our theory in the context of bifurcation
problems for some partial differential equations, and we close with a few remarks.

It should also be noted that over about the last three decades a major emphasis
in bifurcation studies has been on branching in the presence of symmetry (cf. [20],
[33]). In this context it is well known that branch points are usually related to
symmetry breaking. A related computational question is then, when a symmetry
(equivariance) is broken, can this be exploited in the computational methods? The
examples we consider explicitly are all nonautonomous due to the weight function,
ρ(x). So, without rather special assumptions on the inhomogeneities modeled by
ρ(x), symmetries are not expected. The question would arise if the boundary value
problem of section 6 with ρ(x) = 1 is considered over symmetric domains such as
regular hexagons or octagons in the plane. Finite element versions of our theorems
of section 4 would then come into play, as mentioned in the remarks at the end of
section 6. We have not explored this, but some related numerical results without the
need for calculational techniques to estimate the root of a branch can be found in [4].

2. The Rayleigh–Ritz method and a model nonlinear problem. Let H
be a separable complex Hilbert space with norm ‖·‖ and inner product 〈·, ·〉. Let A be
a self-adjoint operator in H with domain D(A). We assume that A is positive definite,
i.e., ‖Au‖ ≥ α‖u‖, u ∈ D(A), α > 0, and that the lower portion of the spectrum of
A consists of isolated eigenvalues of finite multiplicity. Thus the lower spectrum of A
may be written

0 < α ≤ λ1 ≤ λ2 ≤ · · · ≤ λ∞

with corresponding orthonormal eigenvectors u1, u2, . . . , where λ∞ denotes the least
point of the essential spectrum of A. By convention, λ∞ = ∞ if A has compact
inverse. Further, let a(u) be the quadratic form corresponding to A, i.e., the closure
of 〈Au, u〉, with domain D(a). Then a(u) ≥ α‖u‖2 for u ∈ D(a), and we let a(u, v),
u, v ∈ D(a), be the corresponding Hermitian symmetric bilinear form.

The Rayleigh–Ritz method for estimation of eigenpairs of A begins with a family
of trial vectors {wi}ni=1 ⊂ D(a). It then proceeds with the setup and resolution of the
generalized matrix eigenvalue problem[

a(wi, wj)
]
x = Λ

[〈wi, wj〉
]
x.
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QUADRATIC INTERPOLATION AND RAYLEIGH–RITZ METHODS 2989

If the resulting matrix eigenvalues are denoted by Λ
(n)
1 ≤ Λ

(n)
2 ≤ · · · ≤ Λ

(n)
n , the first

monotonicity principle [40] guarantees that for each i = 1, 2, . . . , n, λi ≤ Λ
(n)
i , thus

providing upper bounds for the lowest n eigenvalues of A. Let u
(n)
1 , u

(n)
2 , . . . , u

(n)
n be

the corresponding orthogonalized eigenvectors, normalized in H. Thus 〈u(n)
i , u

(n)
j 〉 =

δij and a(u
(n)
i , u

(n)
j ) = Λ

(n)
i δij , where δij is the Kronecker symbol.

Completeness of {wi}∞i=1 in D(a) is sufficient to guarantee that for each eigenvalue

λi of A below λ∞, Λ
(n)
i → λi and u

(n)
i → ui in D(a) both as n → ∞ (cf. [5], [16],

[40]). Rate of convergence estimates are also available from these sources. But to use
the Rayleigh–Ritz eigenvectors for other calculations of interest requires estimates in
other norms, which is the thrust of this paper. Herein we look specifically at the
estimation of bifurcation coefficients in nonlinear eigenvalue problems. Convergence
in the energy norm, i.e., that of D(a), may be insufficient to handle the nonlinearity,
or when sufficient may give only a crude estimate. To illustrate this point we now
begin the examination of a nonlinear rotating string problem.

Perhaps the simplest nonlinear refinement of the standard linear model for a
tightly stretched flexible string of length L with linear density ρ, rotating with uniform
angular velocity ω about its equilibrium position along the x-axis, is

(2.1) T0
d2y

dx2
+ ρω2 y

√
1 +

(
dy

dx

)2

= 0.

Herein, y is the deflection from equilibrium at the point x, and the condition of force
equilibrium in the x direction (in the absence of external forces in that direction)
implies that the tension T satisfies

T
dx

ds
= T0 = constant,

so that by solving for the deflection y, the tension T is given by

T = T0

√
1 +

(
dy

dx

)2

(cf. [25]). As usual, s denotes arclength. When ρ is constant, (2.1) is solvable explicitly
in terms of elliptic integrals [21]. In this section we examine calculation of small, but
not infinitesimal, deflections when ρ is variable. Setting λ = ω2/T0 and y =

√
ε u,

with ε small and positive, yields the nonlinear eigenvalue problem

−u′′ = λρ(x)u
√
1 + ε u′2 = 0, ′ :=

d

dx
,

and we will require fixed end conditions

u(a) = u(b) = 0,

signifying that the equilibrium position of the string is the interval [a, b] of length L.
We assume that ρ is smooth and strictly positive on [a, b].

To better illustrate applicability of the theory we will in fact consider the family
of nonlinear eigenvalue problems

(2.2) −u′′ = λρ(x)u
(
1 + ε (u′)2t

) 1
2t

= 0, u(a) = u(b) = 0,
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2990 W. M. GREENLEE AND L. HERMI

where t is a positive integer. These are all W 1,1(a, b) perturbations of the linearized
problem obtained by setting ε = 0, and the rotating string model is given when t = 1.

Solutions of (2.2) are smooth and the eigenvalues of the linearized problem are
simple, so known results of bifurcation theory employing the Banach space C2[a, b]
imply that there are solution pairs (λε, uε) analytic in ε for small ε emanating from
any eigenpair (λ0, u0) of

(2.3) −u′′ = λρ(x)u, u(a) = u(b) = 0

(cf. [34], [39]). So we write solutions of (2.2) as

uε = v0 + ε v1 +
ε2

2
v2 + · · · ,

(2.4)

λε = ν0 + ε ν1 +
ε2

2
ν2 + · · · ,

where v0 = u|ε=0, v1 = du
dε |ε=0, etc. As we shall see, calculation of the coefficients

v1, ν1, etc., in (2.4) based on Rayleigh–Ritz-type solutions of (2.3) will require Ritz
methods convergent in norms stronger than that of the energy norm, i.e., the norm of
H1

0 (a, b). That this is the case is readily seen by expanding the nonlinearity in (2.2)
to obtain

−u′′ = λρ u

(
1 +

ε

2t
(u′)2t +

(1− 2t)

8t2
ε2 (u′)4t + · · ·

)
.

Successive equations for ν0, v0, ν1, v1, . . . are obtained, as usual, by equating coeffi-
cients in ε in this expression. The first equation obtained is the linear eigenvalue
problem

(2.5) −v′′0 = ν0 ρ(x) v0, v0(a) = v0(b) = 0.

Our goal is to investigate the use of Rayleigh–Ritz methods for (2.5) in the calculation
of the bifurcation coefficient ν1, and further terms in the two series (2.4). The second
equation is

(2.6) −v′′1 − ν0 ρ(x)v1 = ν1 ρ(x) v0 +
ν0
2t

ρ(x) v0 (v′0)
2t
, v1(a) = v1(b) = 0.

The Fredholm alternative yields solvability of (2.6) if and only if

ν1 (ρ(x)v0, v0) +
ν0
2t

(
ρ(x)v0(v

′
0)

2t, v0
)
= 0,

where (· , ·) is the usual L2(a, b) inner product with respect to Lebesgue measure dx.
Taking v0 to be normalized in L2 with respect to the measure ρ(x)dx over (a, b) (which
we will take as the space H with inner product 〈·, ·〉), i.e.,

(2.7) (ρ(x)v0, v0) = 〈v0, v0〉 = 1,

gives ν1 as

(2.8) ν1 = −ν0
2t

(
ρ(x)v0(v

′
0)

2t, v0
)
= −ν0

2t
〈v0(v′0)2t, v0〉.
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QUADRATIC INTERPOLATION AND RAYLEIGH–RITZ METHODS 2991

The component of v1 in the “ρ orthogonal complement of v0” is uniquely determined
by solving (2.6) with this value of ν1. Note that ν1 is negative, i.e., the bifurcation is
subcritical. By also setting the component of v1 parallel to v0 in H equal to zero, one
obtains that the parameter ε

1
2t is the H norm of the component of the power series

solution of (2.1) in the direction of v0.
The third equation obtained from (2.4) is

−v′′2 − ν0 ρ(x)v2 = ν2 ρ(x)v0 + 2ν1ρ(x)v1 +
ν1
t
ρ(x) v0 (v

′
0)

2t

+
ν0
t
ρ(x) v1 (v′0)

2t
+ 2ν0 ρ(x) v0 v

′
1 (v

′
0)

2t−1

+
ν0(1 − 2t)

4t2
ρ(x) v0 (v′0)

4t
,(2.9)

with v2(a) = v2(b) = 0. Retaining the normalization (2.7), the Fredholm alternative
yields solvability of (2.9) if and only if

ν2 = −2ν1〈v1, v0〉 − ν1
t
〈v0 (v′0)2t , v0〉

− ν0
t
〈v1 (v′0)

2t
, v0〉 − 2ν0 〈v0 v′1 (v′0)2t−1

, v0〉

− ν0(1 − 2t)

4t2
〈v0 (v′0)

4t
, v0〉.(2.10)

With this value of ν2, v2 is uniquely determined in the H-orthogonal complement of
v0, while in the direction of v0 the component of v2 is taken to be zero. This preserves
the previous interpretation of the parameter ε

1
2t .

Note that if (2.5) is solved approximately by the Rayleigh–Ritz method, conver-
gence of the approximate eigenvectors is in the topology of H1

0 (a, b). This is sufficient
to guarantee convergence of the corresponding approximation to ν1 as calculated from
(2.8) only for t = 1. To rigorously approximate ν1 for t > 1, or ν2 for any value of t,
requires that approximate eigenvectors converge in C1

0 [a, b], which is strictly contained
in H1

0 (a, b). We will obtain such convergence estimates by using quadratic interpola-
tion between Hilbert spaces to generalize the venerable notion of Rayleigh quotient.
This will yield convergence rates in Hα(a, b) with α > 3/2, which implies convergence
in C1

0 [a, b] via basic Sobolev theory. Then rates of convergence of these nonlinear
functionals will be estimated.

3. Quadratic interpolation and fractional Rayleigh–Ritz. To provide a
theoretical framework for the eigenvector estimates required in the preceding example,
let T = A−1, which is a bounded self-adjoint operator in H. It is well known that
T is also self-adjoint in D(a) with the topology induced by the inner product a(u, v);
i.e., the restriction of T to D(a) is bounded and satisfies a(Tu, v) = a(u, T v) = 〈u, v〉,
u, v,∈ D(a). The Rayleigh quotient for reciprocals of eigenvalues of A is

〈u, u〉
a(u)

=
a(Tu, u)

a(u)
.

In this form the Rayleigh–Ritz method produces lower bounds,(
Λ
(n)
i

)−1

↗ λ−1
i

as n → ∞ from trial vectors {wi}∞i=1 that are complete in D(a). Now for real τ
let Aτ be the τth power of A as defined by use of the spectral theorem [26]. This

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

39
.1

84
.3

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2992 W. M. GREENLEE AND L. HERMI

is particularly simple to describe if A has a complete set of eigenvectors {ui}∞i=1,
orthonormal in H. Then u =

∑∞
i=1 αi ui ∈ H if and only if

∑∞
i=1 |αi|2 < ∞, and if

τ > 0, u ∈ D(Aτ ) if and only if
∑∞

i=1 λ
2τ
i |αi|2 < ∞, while for τ < 0 we take D(Aτ )

to be the completion of H in the norm ‖Aτu‖2 =∑∞
i=1 λ

2τ
i |αi|2. Herein αi = 〈u, ui〉.

Whether or not A has a complete set of eigenvectors, D(Aτ ) and D(A−τ ) are dual
spaces, where duality is taken relative to 〈·, ·〉. Since A has a strictly positive lower
bound, if A is bounded, all of these norms generate the same topology. Our interest is
in unbounded A, in particular differential operators, and then if τ1 > τ2, the topology
corresponding to τ1 is strictly stronger than that for τ2. When A is differential and τ
is positive and not an integer, Aτ acts as a pseudodifferential operator (cf. [37]).

For 0 ≤ τ ≤ 1, the Hilbert spaces D(Aτ ) with inner product 〈·, ·〉τ = 〈Aτ ·, Aτ ·〉
are the interpolation spaces by quadratic interpolation between D(A) with inner prod-
uct 〈·, ·〉1 = 〈A ·, A ·〉 and H with inner product 〈·, ·〉0 = 〈A0 ·, A0 ·〉 (cf. [2]). This
definition of quadratic interpolation has been used in spectral methods employing pe-
riodic Sobolev spaces on the line in [30]. But in the finite element literature the “real
method of interpolation” is common (cf. [13], [14]). Via the usual complexification of
real Hilbert spaces both of these interpolation methods are known to be equivalent
[28], [29]. Our parameter τ is denoted by 1 − θ in these references. Though inter-
polated norms are commonly used in static (Au = f) problems and time-dependent
problems, for eigenvalue problems such methods seem only to have been used for
rates of convergence in standard norms (cf. [8], [9]). The use of fractional powers is
quite natural in spectral methods, and we will comment later on applicability of our
theorems via finite element constructions.

Now observe that by the functional calculus for self-adjoint operators, T , i.e., the
restriction or extension of T as appropriate, is self-adjoint in D(Aτ ) for any τ . We
will use the symbol T for all of these operators, and note that in all of these spaces T
has the same eigenvalues and eigenvectors.

In theory the upper eigenvalues of T (lower eigenvalues of A) can be estimated
by the Rayleigh–Ritz method in any of these spaces. The Rayleigh quotient for T in
D(Aτ ) is

〈AτTu,Aτu〉
〈Aτu,Aτu〉 =

〈Aτ−1u,Aτu〉
〈Aτu,Aτu〉 for u 
= 0 in D(Aτ ).

In practice only the Rayleigh quotients with τ an integer or half integer are potentially
useful for computation, and for τ ≤ 0 this requires a useful formula for A−1. Our
method is to proceed initially in the abstract, and then use duality-type arguments
to estimate convergence of standard Rayleigh–Ritz eigenvectors in other interpolation
norms. This will resolve the convergence questions raised in the nonlinear rotating
string example of the previous section.

The three Rayleigh quotients

(3.1)
〈u,Au〉
〈Au,Au〉

corresponding to τ = 1,

(3.2)
〈u, u〉
a(u)

=
〈u, u〉

〈A1/2u,A1/2u〉
corresponding to τ = 1/2, and

(3.3)
〈Tu, u〉
〈u, u〉
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corresponding to τ = 0 have been studied in the context of matrix eigenvalue problems
in [7]. Therein the quotient (3.1) is termed right definite Lehman with zero shift or
harmonic Ritz, (3.2) regular Rayleigh–Ritz, and (3.3) left definite Lehman or dual
harmonic Ritz.

The Rayleigh–Ritz method in D(Aτ ), which we now denote by Hτ , proceeds by
analogy with regular Rayleigh–Ritz. One selects a family of trial vectors {wi}ni=1 ⊂ Hτ

and forms the generalized matrix eigenvalue problem[〈wi, wj〉τ
]n
i,j=1

x = Λ
[〈Twi, wj〉τ

]n
i,j=1

x.

If the resulting matrix eigenvalues are denoted by

Λ
(n,τ)
1 ≤ Λ

(n,τ)
2 ≤ · · · ≤ Λ(n,τ)

n ,

the first monotonicity principle again guarantees that for each i = 1, 2, . . . , n, λi ≤
Λ
(n,τ)
i . Let u

(n,τ)
1 , u

(n,τ)
2 , . . . , u

(n,τ)
n be the corresponding eigenvectors orthonormalized

in Hτ−1/2. Thus 〈u(n,τ)
i , u

(n,τ)
j 〉τ−1/2 = δij and

〈u(n,τ)
i , u

(n,τ)
j 〉τ = Λ

(n,τ)
i δij ,

where δij is the Kronecker symbol.
Now let Pn,τ be the orthogonal projection operator in Hτ onto span{wi}ni=1, the

span of the first n trial vectors. In general, Pn,τ depends on τ . If {wi}∞i=1 is complete
in Hτ , Pn,τ → I strongly in Hτ as n → ∞.

Completeness of {wi}∞i=1 in Hτ is also sufficient to guarantee convergence of Λ
(n,τ)
i

to λi as n → ∞ for each eigenvalue λi of A below λ∞ (cf. [40]). Our interest is in
rate of convergence estimates obtainable by spectral or finite element methods from
‖ (I − Pn,τ )Q‖τ and ‖ (I − Pn,τ )Q‖τ−1/2, where Q is a spectral projection for A onto
the span of finitely many of the eigenvectors u1, u2, . . . . Note that while, in general,
Pn,τ depends on τ , the spectral projection Q is independent of τ .

Theorem 3.1. Let Q� be the spectral projection for A onto span{u1, . . . , u�}. If
{wi}∞i=1 is complete in Hτ , then for large n and each j = 1, . . . , �,

0 ≤ Λ
(n,τ)
j − λj ≤ Λ

(n,τ)
�

(
‖ (I − Pn,τ )Q�‖2τ−1/2 + 2λ�

(
�∑

i=1

λ−1
i

)
‖ (I − Pn,τ )Q�‖2τ

)
,

where ‖ ·‖τ and ‖ ·‖τ−1/2 denote the norms of bounded operators in the corresponding
spaces. Furthermore, there exist eigenvectors uj,n of A in the λj eigenspace, normal-
ized in Hτ−1/2, such that

‖uj,n − u
(n,τ)
j ‖2τ ≤ 4λj

(
1 +

λj

κδ

)2

‖ (I − Pn,τ )Q‖2τ−1/2 + Λ
(n,τ)
j − λj ,

‖uj,n − u
(n,τ)
j ‖τ−1/2 ≤ 2

(
1 +

λ�

κδ

)
‖ (I − Pn,τ )Q‖τ−1/2,

where Q is the spectral projection onto the λj eigenspace,

δ = dist({λj}, σ(A)− {λj}),
0 < κ < 1, and σ(A) is the spectrum of A.
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2994 W. M. GREENLEE AND L. HERMI

Theorem 3.1 is obtained by translating the proof of the corresponding theorem in
[36] into our context, with attention to specific constants in their estimates, and more
detail on eigenvectors corresponding to multiple eigenvalues. The proof is given in
the appendix. A strength of the method is that compactness of T is not required, and
the eigenvalue and eigenvector estimates scale correctly if A is replaced by (const.)A
(cf. [36], [38]). But a weakness of the method is that in order to estimate λk, one
must employ the estimates for λ1, λ2, . . . , λk−1. Though this is consistent with the
progression of the Rayleigh–Ritz method, in such problems as the L-shaped membrane
considered in [5], [36], the lowest eigenvalues have eigenvectors that are less smooth
than those for higher eigenvalues. This gives slower rates of convergence. In [5], [16]
localized projection estimates (though not in fractional norms), i.e., with Q� replaced
by the spectral projection for A onto a single eigenspace of A, are obtained. Their
methods use compactness of T , and it is an open problem whether the hypothesis of
compactness can be relaxed.

Before proceeding to the abstract theorems for spectral implementation of Theo-
rem 3.1, we recall a basic interpolation theorem for use in what follows. Let V1 and
V0 be Hilbert spaces with V1 continuously contained in V0, written V1 ⊂c V0, i.e.,
V1 ⊂ V0 with the injection from V1 into V0 continuous, and V1 dense in V0. Then
there is a positive definite self-adjoint operator S in V0 such that the inner product
〈·, ·〉1 in V1 is given by

〈u, v〉1 = 〈Su, Sv〉0,
for all u, v ∈ V1 = D(S), where 〈·, ·〉0 is the inner product in V0. For 0 ≤ τ ≤ 1, the
τth interpolation space by quadratic interpolation between V1 and V0 is the Hilbert
space Vτ = D(Sτ ) with inner product 〈u, v〉τ = 〈Sτu, Sτv〉0.

Proposition 3.2. Let W1 and W0 be a second pair of Hilbert spaces with W1 ⊂c

W0 and W1 dense in W0. Further, let C be a continuous linear mapping of V0 into
W0 with bound m0 which is also continuous from V1 into W1 with bound m1. Then
for each τ ∈ (0, 1), C is continuous from Vτ into Wτ with bound mτ ≤ mτ

1m
1−τ
0 .

Proofs of Proposition 3.2 can be found in [2], [29]. An immediate consequence of
this proposition is that changes between equivalent norms of each of V1 and V0 affect
Vτ only up to an equivalent norm. This follows by employing the identity map for
both C and C−1.

While rate of convergence results for the linear eigenvalue problem embedded
in the rotating string problem can be obtained by integration by parts (cf. [11], [12],
[15]), the fractional norm estimates needed for sharp approximation of the bifurcation
coefficients require a more extensive theory. It is essential to be able to determine
when a function is in the domain of a fractional power of a differential operator from
knowledge of the smoothness and the homogeneous boundary conditions satisfied by
the function. We now sketch results which resolve this for our purposes.

If Ω is a bounded domain in R
n with smooth boundary ∂Ω, results for general

normal homogeneous boundary conditions are obtained in [23]. Denote by Hm
B
(Ω)

the closed subspace of Hm(Ω) consisting of the elements u ∈ Hm(Ω) for which

Bju = 0 on ∂Ω, 0 ≤ j ≤ k,

where the Bj ’s are differential operators of order mj < m. The boundary operators
{Bj} are assumed to have smooth coefficients, to have distinct orders, and to be
“normal,” i.e., to have the form

Bj =
∂mj

∂νmj
+ terms of order at most mj
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on ∂Ω. ∂/∂ν denotes the normal derivative. Then if V1 = Hm
B
(Ω), V0 = L2(Ω), and

τ ∈ (0, 1) is such that mτ − 1/2 
= mj for any j = 1, . . . , k,

Vτ = Hmτ
B

(Ω) =
{
u ∈ Hmτ (Ω) : Bju = 0 on ∂Ω for all j such that mj < mτ − 1/2

}
.

Note that for these values of τ the spaces Hmτ
B

(Ω) are closed subspaces of Hmτ (Ω).
For each of the “exceptional” values τ , Vτ has a strictly stronger norm than that of
Hmτ

B
(Ω), the closure of Hm

B
(Ω) in Hmτ (Ω).

Remark. For domains with corners, let Ω be a Lipschitzian graph domain in R
n

(cf. [3]). When n = 1, this means an open interval. Then for any positive integer m,
if we let V1 be the Sobolev space Hm(Ω) and V0 = H0(Ω) = L2(Ω), then Vτ =
Hmτ (Ω), 0 ≤ τ ≤ 1 (cf. [3], where the theory is given in the language of Bessel
potentials). For homogeneous Dirichlet boundary conditions and Ω a Lipschitzian
graph domain, the following results are contained in [22] (cf. also [13]). If, as usual, for
α > 0, Hα

0 (Ω) denotes the closure of C
∞
0 (Ω) inHα(Ω), V1 = Hm

0 (Ω), and V0 = H0(Ω),
then Vτ = Hmτ

0 (Ω) whenever τ ∈ (0, 1) is such that mτ + 1/2 is not an integer. For
each “exceptional” value of τ the space Vτ has a strictly stronger norm than that of
Hmτ

0 (Ω). If, in addition, ∂Ω, the boundary of Ω, is smooth enough that the self-adjoint
elliptic operator A over Ω defined by

(Au, v)L2(Ω) = (u, v)Hm(Ω) for all v ∈ Hm
0 (Ω)

has domain H2m(Ω)∩Hm
0 (Ω) (regularity at the boundary of weak solutions), then if

V1 = H2m(Ω) ∩Hm
0 (Ω) and V0 = Hm

0 (Ω), Vτ = H2mτ (Ω) ∩Hm
0 (Ω) for all τ ∈ (0, 1).

Since D(A1/2) = Hm
0 (Ω) (cf. [26]) this resolves the interpolation problem between

H2m(Ω) ∩ Hm
0 (Ω) and L2(Ω). This statement is slightly stronger than that of The-

orem 5.3 of [22], but is exactly what is proved there. As stated here, an additional
possible application is to the homogeneous Dirichlet problem for the biharmonic op-
erator on a rectangle in R

2 (cf. [24]).

4. Spectral implementation. Let G0 be a Hilbert space consisting of the same
elements as H0 with an equivalent norm. We write (·, ·)0 and |·|0 for the inner product
and norm in G0, respectively. Further, letM be a positive definite self-adjoint operator
in G0 with M−1 compact. Denote by

0 < μ1 ≤ μ2 ≤ · · · ≤ μk ≤ · · · → ∞
the eigenvalues of M , counted according to multiplicity, with corresponding eigen-
vectors q1, q2, . . . , qk, . . . orthonormal in G0. The eigenvectors {qk} will serve as trial
vectors for the eigenpairs of A. For this purpose let Rn be the G0-orthogonal projection
onto span{q1, . . . , qn}, and let Pn,τ be, as previously, the Hτ -orthogonal projection
onto span{q1, . . . , qn}. In the rotating string example begun in section 2, G0 will be
L2(a, b) with Lebesgue measure, while H0 will be the L2 space on (a, b) with measure
ρ(x)dx.

Proposition 4.1. Assume that

(4.1) D
(
M1/2

)
⊂c D

(
A1/2

)
,

and let 0 ≤ τ ≤ 1/2. Then if σ ≥ τ and the eigenvectors u1, u2, . . . , u� of A are all in
D (Mσ),

Λ
(n,τ)
j = λj + o

(
μ2τ−2σ
n+1

)
, 1 ≤ j ≤ �,
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2996 W. M. GREENLEE AND L. HERMI

and

‖uj,n − u
(n,τ)
j ‖τ = o

(
μτ−σ
n+1

)
, 1 ≤ j ≤ �,

both as n → ∞. Here “o” is the usual Landau symbol “little oh.”
Proof. First note that (4.1) implies completeness of {qk} in D(A1/2). Then if

v ∈ D(Mσ),

‖ (Pn,τ − I) v‖τ = ‖Aτ (Pn,τ − I) v‖0
= ‖Aτ (Pn,τ − I) (Rn − I) v‖0
≤ ‖Aτ (Rn − I) v‖0

since Pn,τ is an orthogonal projection in Hτ = D(Aτ ). Now since the identity map,
I, is continuous from G0 into H0 and also from D(M1/2) into D(A1/2), it follows from
Proposition 3.2 that for 0 ≤ τ ≤ 1/2,

‖Aτv‖0 ≤ c |M τv|0 for all v ∈ D(M τ ).

Herein, and in what follows, c is a generic constant, whose value varies from place to
place, but is always independent of the order of the approximation (n here). Thus for
v ∈ D(Mσ)

‖ (Pn,τ − I) v‖τ ≤ c |M τ (Rn − I)v|0
= c |(Rn − I)M τv|0,

since Rn is a spectral projection for M , and hence for M τ as well. So since σ ≥ τ
and v ∈ D(Mσ),

‖ (Pn,τ − I) v‖2τ ≤ c

∞∑
k=n+1

| (M τv, qk)0 |2

= c

∞∑
k=n+1

| (Mσv,M τ−σqk
)
0
|2

= c

∞∑
k=n+1

μ2τ−2σ
k | (Mσv, qk)0 |2

≤ c μ2τ−2σ
n+1

∞∑
k=n+1

| (Mσv, qk)0 |2

≤ c μ2τ−2σ
n+1 |Mσv|20 o(1) as n → ∞.

In brief,

‖(Pn,τ − I)v‖2τ = o
(
μ2τ−2σ
n+1

)
as n → ∞.

Since the norm in Hτ is stronger than that in Hτ−1/2 the proposition follows from
Theorem 3.1.

Note that we have effectively used powers of M to perform “a continuous abstract
integration by parts.” Proposition 4.1 provides potentially useful information for
τ = 0 or τ = 1/2. But for 0 < τ < 1/2, the Rayleigh quotient is usually not
computable since typically, at best, only complicated expressions for equivalent norms
are known.
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We now give the analogue of Proposition 4.1 for the harmonic Ritz method, i.e.,
the Rayleigh quotient with τ = 1. G0 and M are as previously defined.

Proposition 4.2. Assume that

(4.2) D (M) ⊂c D (A) ,

and let 0 ≤ τ ≤ 1. Then if σ ≥ τ and the eigenvectors u1, u2, . . . , u� of A are all in
D (Mσ),

Λ
(n,τ)
j = λj + o

(
μ2τ−2σ
n+1

)
, 1 ≤ j ≤ �,

and

‖uj,n − u
(n,τ)
j ‖τ = o

(
μτ−σ
n+1

)
, 1 ≤ j ≤ �,

both as n → ∞.
The proof directly mimics that of Proposition 4.1. As there, potentially useful

information has been obtained for τ = 0, 1/2, and 1, and for τ = 1, this is applicable to
the nonlinear string problem. But in that problem, the critical value of τ to treat the
expansion of the nonlinearity is τ = 3/4. The following theorem enables us to apply
regular Rayleigh–Ritz, i.e., τ = 1/2, with τ large enough to treat the nonlinearity.
This requires stronger hypotheses that are satisfied only when A has compact inverse.
An example in another context [9] applies hypotheses like those of the preceding two
propositions to A without compact inverse.

Theorem 4.3. Let τ > 1/2, assume that D(M τ ) = D(Aτ ), with equivalent
norms, and further assume that D(M2τ−1/2) ⊂c D(A2τ−1/2). Then if for each j =
1, . . . , � both

(4.3)

∑∞
k=n+1 μ4τ−1

k |(uj , qk)0|2∑∞
k=n+1 μ2τ

k |(uj , qk)0|2 = O
(
μ2τ−1
n+1

)
as n → ∞

and uj ∈ D(Mσ) with σ ≥ 2τ − 1/2, one has

‖uj − u
(n,1/2)
j ‖τ = o

(
μτ−σ
n+1

)
as n → ∞, j = 1, . . . , �.

Proof. Let u
(n)
j = u

(n,1/2)
j , and define wj,n by

A1−2τwj,n = uj − u
(n)
j ,

i.e.,

wj,n = A2τ−1
(
uj − u

(n)
j

)
.

Our hypotheses guarantee that wj,n is well defined, and that the following manipula-
tions are valid. Then

‖uj − u
(n)
j ‖2τ = 〈uj − u

(n)
j , A1−2τ wj,n〉τ

= 〈Aτ (uj − u
(n)
j ), A1−τ wj,n〉0

= 〈A1/2(uj − u
(n)
j ), A1/2 wj,n〉0

= a(uj − u
(n)
j , wj,n).
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2998 W. M. GREENLEE AND L. HERMI

The Rayleigh–Ritz method is such that if wj,n = 0 for some n, it vanishes for all
greater n, and there is nothing to prove. Otherwise, by the definition of wj,n,

‖uj − u
(n)
j ‖τ ≤ ‖uj − u

(n)
j ‖1/2 ‖wj,n‖1/2

‖A1−2τ wj,n‖τ .

Noting that

‖wj,n‖1/2
‖A1−2τ wj,n‖τ =

‖A1−2τwj,n‖2τ−1/2

‖A1−2τ wj,n‖τ ,

it remains to prove that the latter ratio is O(μ
τ−1/2
n+1 ), as n → ∞, since by Proposition

4.1, ‖uj − u
(n)
j ‖1/2 = o(μ

1/2−σ
n+1 ) as n → ∞. For this purpose observe that

‖A1−2τwj,n‖2τ−1/2

‖A1−2τ wj,n‖τ =
‖uj − u

(n)
j ‖2τ−1/2

‖uj − u
(n)
j ‖τ

≤ c
|M2τ−1/2(uj − u

(n)
j )|0

|M τ (uj − u
(n)
j |0

,

since D(Aτ ) = D(M τ ) and D(A2τ−1/2) ⊂c D(M2τ−1/2). Thus it suffices to show that

sup
v∈span{uj ,q1,...,qn}

|M2τ−1/2 v|20
|M τv|20

= sup
x∈span{Mτuj ,q1,...,qn}

|M τ−1/2 x|20
|x|20

= O(μ2τ−1) as n → ∞,

where we have used the fact that the qk’s are eigenvectors of M , and hence of M τ as
well. Then if Rn is the spectral projection for M onto span{q1, . . . , qn},

sup
x∈span{Mτuj ,q1,...,qn}

|M τ−1/2 x|20
|x|20

= sup
x∈span{(I−Rn)Mτuj ,q1,...,qn}

|M τ−1/2 x|20
|x|20

= sup
x∈span{(I−Rn)Mτuj ,q1,...,qn}

( |M τ−1/2Rn x|20
|x|20

+
|M τ−1/2 (I −Rn)x|20

|x|20

)

by the Pythagorean theorem. The latter is dominated by

sup
x∈span{(I−Rn)Mτuj ,q1,...,qn}

|M τ−1/2 Rn x|20
|x|20

+ sup
x∈span{(I−Rn)Mτuj ,q1,...,qn}

|M τ−1/2 (I −Rn)x|20
|x|20

,

which is equal to

sup
x∈span{q1,...,qn}

|M τ−1/2Rn x|20
|x|20

+
|M τ−1/2 (I −Rn)M

τuj |20
|(I −Rn)M τuj|20

since Rn and I − Rn are complementary spectral projections for M , and therefore
for the powers of M . Since τ − 1/2 > 0 the remaining sup is, by the variational
characterization of eigenvalues of M τ−1/2, exactly

|M τ−1/2 qn|20
|qn|2 = μ2τ−1

n .
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The latter ratio is ∑∞
k=n+1 μ4τ−1

k |(uj, qk)0|2∑∞
k=n+1 μ2τ

k |(uj , qk)0|2 ,

which by hypothesis is O(μ2τ−1
n+1 ). Since μn+1 ≥ μn and 2τ − 1 > 0, this concludes the

proof.
Note that use of regular Rayleigh–Ritz, rather than “τ -Ritz” with τ > 1/2, does

not change the “optimal” rate of eigenvector convergence in the τ norm as given in
Proposition 4.2. Since, when applicable, dual harmonic Ritz gives faster eigenvalue
rates of convergence for a given set of trial vectors, we now present the corresponding
theorem for this case.

Theorem 4.4. Let τ > 0, assume that D(M τ ) = D(Aτ ), with equivalent norms,
and further assume that D(M2τ ) ⊂c D(A2τ ). Then if for each j = 1, . . . , � both

(4.4)

∑∞
k=n+1 μ4τ

k |(uj , qk)0|2∑∞
k=n+1 μ2τ

k |(uj , qk)0|2 = O
(
μ2τ
n+1

)
as n → ∞

and uj ∈ D(Mσ) with σ ≥ τ , one has

‖uj − u
(n,0)
j ‖τ = o

(
μτ−σ
n+1

)
as n → ∞, j = 1, . . . , �.

The proof of Theorem 4.4 mimics that of Theorem 4.3, starting by defining wj,n as

A−2τ wj,n = uj−u
(n,0)
j . The corresponding theorem using a harmonic Ritz calculation

with τ > 1 would entail defining wj,n by A2−2τ wj,n = uj −u
(n,1)
j . We will not pursue

this.
We now examine convergence of Rayleigh–Ritz eigenvectors in the H0 norm,

weaker than the energy norm. The following is an abstraction of a duality argument
from finite element theory as presented in [14].

Theorem 4.5. Assume that D(A) = D(M) with equivalent norms |Mv|0 and
‖Av‖0. Then if σ ≥ 1/2 and v ∈ D(Mσ),

‖v − Pn,1/2v‖0 = o(μ−σ
n+1) as n → ∞.

Moreover, the conclusion of Proposition 4.1 can be supplemented by

‖uj − u
(n,1/2)
j ‖0 = o(μ−σ

n+1), 1 ≤ j ≤ �, as n → ∞,

provided that the first � eigenvectors, u1, . . . , u�, are in D(Mσ).
Proof. For simplicity of notation denote Pn,1/2 by Pn, and for v ∈ D(Mσ) let wn

be the unique solution of

Awn = v − Pnv.

If wn = 0, there is nothing to prove. Otherwise,

‖v − Pnv‖20 = 〈v − Pnv,Awn〉0
= a(v − Pnv, wn)

= a(v − Pnv, wn − Pnwn).
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So by the definition of wn,

‖v − Pnv‖0 ≤ ‖v − Pnv‖1/2 ‖wn − Pnwn‖1/2
‖Awn‖0

≤ c
‖v − Pnv‖1/2 ‖wn − Pnwn‖1/2

|Mwn|0 .(4.5)

Since wn ∈ D(A) = D(M), it follows as in the proof of Proposition 4.1 that

‖wn − Pnwn‖21/2 ≤ c μ−1
n+1|Mwn|20,

and since v ∈ D(Mσ) with σ ≥ 1/2, it follows similarly that

‖v − Pnv‖21/2 ≤ c μ1−2σ
n+1 |Mσv|20 o(1) as n → ∞.

So (4.5) yields

‖v − Pnv‖0 ≤ c μ−1
n+1 μ

1−2σ
n+1 |Mσv|20 o(1) = o(μ−2σ

n+1) as n → ∞,

and the theorem follows from Theorem 3.1.
It is possible to use Proposition 3.2 to obtain ‖v − Pn,1/2v‖τ = o(μτ−σ

n+1) with
0 < τ < 1/2 as n → ∞ under the hypotheses of Theorem 4.5. But this does not
immediately extend to a Rayleigh–Ritz eigenvector estimate in the τ norm. That
remains an open problem. The theorem for harmonic Ritz eigenvector estimation in
the energy norm is as follows.

Theorem 4.6. Assume that D(A3/2) = D(M3/2) with equivalent norms |M3/2v|0
and ‖A3/2v‖0. Then if σ ≥ 1 and v ∈ D(Mσ),

‖v − Pn,1v‖21/2 = o(μ1−2σ
n+1 ) as n → ∞.

Moreover, the conclusion of Proposition 4.2 can be supplemented by

‖uj − u
(n,1)
j ‖21/2 = o(μ1−2σ

n+1 ), 1 ≤ j ≤ �, as n → ∞,

provided that the first � eigenvectors, u1, . . . , u�, are in D(Mσ).
The proof of Theorem 4.6 mimics that of Theorem 4.5, provided one starts by

defining wn by A3/2 wn = v − Pn,1v, and so is omitted. It is then possible to use
Proposition 3.2 to obtain ‖v − Pn,1v‖τ = o(μτ−σ

n+1) with 1/2 < τ < 1 as n → ∞, but
again this does not lead directly to a corresponding eigenvector estimate.

5. The model nonlinear problem, part 2. There are at least two ways to
formulate the spaces H0 and G0 and the operators A and M to implement the theory
of section 4 for this problem. It is advantageous for our purposes to write (2.5) as

(5.1) Av0 = −1

ρ
v′′0 = ν0 v0, v0(a) = v0(b) = 0

with D(A) = H2(a, b) ∩ H1
0 (a, b). Then A is self-adjoint in L2(a, b) with measure

ρ(x)dx, which we take as H0. The quadratic forms which are needed for harmonic
Ritz and regular Rayleigh–Ritz are then found to be

〈Av,Av〉 =
∫ b

a

(v′′)2

ρ
dx on D(A),
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QUADRATIC INTERPOLATION AND RAYLEIGH–RITZ METHODS 3001

〈Av, v〉 =
∫ b

a

(v′)2 dx on D(A1/2) = H1
0 (a, b),

and

〈v, v〉 =
∫ b

a

v2 ρdx on H0.

As M we take

(5.2) M v = −v′′, v(a) = v(b) = 0,

self-adjoint in G0 = L2(a, b) with Lebesgue measure, dx. Then D(A) = D(M) with
equivalent norms, and the eigenvectors of M generate the usual Fourier sine series.
Note that Av = 0 at a and b if and only if v′′(a) = v′′(b) = 0, and since the same is
true for M , we have D(A2) = D(M2) (with equivalent norms). But if v ∈ D(A3),

A2 v = −1

ρ

(
−1

ρ
v′′
)′′

=
1

ρ

(
1

ρ
viv + 2

(
1

ρ

)′
v′′′ +

(
1

ρ

)′′
v′′
)

(5.3)

must vanish at a and b, while if v ∈ D(M3),

M2 v = viv

must vanish at a and b. Independence of the boundary functionals shows that D(A3)
and D(M3) are different closed spaces of H6(a, b), unless ρ′(a) = ρ′(b) = 0. These
boundary functionals are unstable in the topology of H9/2(a, b) (cf. [23]). So quadratic
interpolation between D(A3) and D(A2) and between D(M3) and D(M2) (as sketched
in section 3) gives

D(Aν) = D(Mν) for all ν < 2 +
1

4
=

9

4
,

with equivalent norms. So one can apply Theorem 4.3 with 2τ − 1/2 < 9/4, i.e.,
τ < 11/8, to our problem.

The other standard way to treat (2.5) is to let z0 =
√
ρ v0 to get

Az0 = − 1√
ρ

(
z0√
ρ

)′′
= ν0 z0, z0(a) = z0(b) = 0.

The so-defined operator A is self-adjoint in L2(a, b) with the usual Lebesgue measure.
So taking this space as both H0 and G0, and M as above, yields the framework of
section 4. But an analysis like that in the previous paragraph yields only D(Aν) =
D(Mν) for all ν < 1 + 1/4 = 5/4. This yields slower rates of convergence, though
Theorem 4.4 can be applied with 2τ − 1/2 < 5/4, i.e., τ < 7/8.

We now proceed to apply the convergence theory of sections 3 and 4 to the solution
of (2.5) and (2.6) with the operators A and M chosen according to (5.1) and (5.2),
respectively. As is well known, the eigenvalues μk (all simple) of M are given by

μk =
k2π2

(b − a)2
, k = 1, 2, . . . ,
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3002 W. M. GREENLEE AND L. HERMI

with corresponding eigenfunctions (unnormalized)

qk = sin
kπ(x − a)

b− a
, a < x < b.

Since μk is proportional to k
2 andD(Aν ) = D(Mν) for all ν < 9/4, Proposition 4.1

shows that the regular Rayleigh–Ritz convergence rates for any index j are

Λ
(n,1/2)
j = λj + o(n−α) for all α < 7

and

‖uj − u
(n,1/2)
j ‖1/2 = o(n−α) for all α < 7/2.

But the result we need for calculation of the bifurcation coefficients is that of
Theorem 4.3.

In order to accomplish this we will need to verify that (4.3) holds. This will be
carried out via integration by parts, which will also slightly improve and simplify
the statements of the estimates of the preceding paragraph. Our abstract “small
oh” estimates are analogues of a classical theorem on Fourier series coefficients of
smoothly periodic functions, while the improvement comes from the corresponding
“big oh” estimates for functions satisfying Dirichlet conditions (cf. [35, p. 130]). This
use of integration by parts is also employed in [11], [12], [15]. While the abstract
theory of section 4 conveniently identifies the possible “big oh” power, it does not
directly imply such improvement, as follows from examples in a different context [22,
pp. 155–156].

So let (λ, u) be an eigenpair for the self-adjoint operator A, and observe that from
the proof of Proposition 4.2 that for 0 ≤ τ ≤ 1,

‖ (Pn,τ − I)u‖τ ≤ c | (Rn − I)M τu|0.

(Rn − I)M τu is just the tail of the Fourier sine series of M τu,

| (Rn − I)M τu|0 =

∞∑
k=n+1

|(M τu, qk)0|2 =

∞∑
k=n+1

μ2τ
k |(u, qk)0|2.

This is also the quantity of concern for larger values of τ for application of Theorem 4.3.
Since normalization of qk in G0 = L2(a, b) is independent of k, we can bury it in

the constant c, and integrate by parts six times, to obtain

∫ b

a

u sin
kπ(x− a)

b− a
dx

=
(b− a)5

k5π5

(
uiv(b) cos kπ − uiv(a)− (b− a)

kπ

∫ b

a

uvi sin
kπ(x− a)

b− a
dx

)
.(5.4)

The boundary terms in the other five integrations by parts all vanish. To see if this
predicts the rate of convergence, first note that since the eigenvector u is in the domain
of any power of A, (5.3) implies that

uiv = −2ρ

(
1

ρ

)′
u′′′ at a and b.
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QUADRATIC INTERPOLATION AND RAYLEIGH–RITZ METHODS 3003

Then since
(
1
ρu

′′)′ = −λu′, it follows that

uiv = −2λρ2
(
1

ρ

)′
u′ at a and b.

Now, u′(a) 
= 0 
= u′(b) since u is an eigenfunction and u(a) = u(b) = 0 by uniqueness
for the initial value problem. Thus uiv(a) 
= 0 
= uiv(b), unless ρ′(a) = ρ′(b) = 0, in
which case one obtains a more rapid rate of convergence. Excluding this special case,
we have, for 0 ≤ τ ≤ 1,

‖ (Pn,τ − I)u‖2τ ≤ c
∞∑

k=n+1

k4τ−10 ≤ c

∫ ∞

n

x4τ−10 = c n4τ−9

since μk = k2π2

(b−a)2 . So it follows as in the proof of Proposition 4.1 that

λ(n,1/2) = λ+O(n−7)

and

‖u− u(n,1/2)‖1/2 = O(n−7/2),

and from that of Theorem 4.5 that

‖u− u(n,1/2)‖0 = O(n−9/2),

all as n → ∞. In addition, (5.4) implies that there exist constants c1 and c2, inde-
pendent of k, such that

c1 k
−5 ≤ |(u, qk)0| ≤ c2 k

−5

for large k. So the numerator in (4.3) is dominated by a constant times

∞∑
k=n+1

k8τ−2k−10 =

∞∑
n+1

k8τ−12 ≤
∫ ∞

n

x8τ−12dx =
n8τ−11

11− 8τ
,

provided that 8τ−12 < −1, i.e., that τ < 11/8. Recalling that we must have σ < 9/4,
this is consistent with the restriction τ ≤ σ/2+ 1/4 in the statement of Theorem 4.3.
Similarly, the denominator in (4.3) is minorized by

∞∑
k=n+1

k4τk−10 =

∞∑
k=n+1

k4τ−10 ≥
∫ ∞

n+1

x4τ−10dx =
(n+ 1)4τ−9

9− 4τ
,

and so the estimate (4.3) is

O

(
n8τ−11

(n+ 1)4τ−9

)
= O

(
μ2τ−1
n+1

)
as n → ∞ for 1/2 ≤ τ < 11/8.

Since we have already verified that ‖u − u(n,1/2)‖1/2 = O(n−7/2), it now follows
from the proof of Theorem 4.3 that

Λ(n,1/2) = λ+O(n−7),
(5.5)

‖u− u(n,1/2)‖τ = O(n2τ−9/2)

for 1/2 ≤ τ < 11/8 as n → ∞.
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3004 W. M. GREENLEE AND L. HERMI

We now examine use of Rayleigh–Ritz approximate eigenvalues and eigenvectors
to calculate ν1 as given in (2.8). Therein, (ν0, v0) is an eigenpair of Au = λu. We will
write (Λ(n), u(n)) for the corresponding Rayleigh–Ritz eigenpair (Λ(n,1/2), u(n,1/2)).
Thus we estimate the rate of convergence of

(5.6) Λ(n)

(
ρ(x)u(n)

(
u(n)′

)2t
, u(n)

)
to λ

(
ρ(x)u (u′)2t, u

)
.

Note that since we already have convergence rate estimates for Λ(n) to λ, it suffices
to estimate the difference between∫ b

a

ρ(x)u(n)2
(
u(n)′

)2t
dx and

∫ b

a

ρ(x)u2(x) (u′(x))2t dx.

Write the difference between these integrals as

(5.7)

∫ b

a

ρ(x)u(n)2
((

u(n)′
)2t

− (u′(x))2t
)
dx+

∫ b

a

ρ(x) (u′(x))2t
(
u(n)2 − u2

)
dx.

Since u′ is smooth, the second integral in (5.7) is dominated by

sup
x∈(a,b)

|ρ(x) (u′(x))2t |
∫ b

a

|u(n)2 − u2|dx,

and by the Cauchy–Schwarz inequality the latter integral is dominated by

(∫ b

a

|u(n) + u|2dx
)1/2 (∫ b

a

|u(n) − u|2dx
)1/2

.

So by the preceding eigenvector estimates and Theorem 4.5 the second integral in
(5.7) is O(n−9/2).

The first integral in (5.7) is equal to

∫ b

a

(
u(n)′ − u′

)
ρ(x)u(n)2

2t−1∑
j=1

(
u(n)′

)j
(u′)2t−j−1

dx,

and integration by parts gives

∫ b

a

(
u(n) − u

) (
ρ(x)u(n)2

2t−1∑
j=1

(
u(n)′

)j
(u′)2t−j−1

)′
dx,

since u(n) and u vanish at a and b. Since u(n) converges to u in Hτ for all τ < 11/8,
u(n) → u in H2(a, b) ∩H1

0 (a, b). Moreover, by the Sobolev inequality [24], (5.5) with

any τ > 3/4 implies uniform convergence of u(n)′ to u′. Thus by the Cauchy–Schwarz
inequality, it follows from Theorem 4.5 and the preceding that the latter integral is
O(n−9/2).

In other words, the rate of convergence estimate for the Rayleigh–Ritz approx-
imation to the first bifurcation coefficient is the same as that for the eigenvector in
the L2(a, b) norm for any t = 1, 2, . . . . The following calculations seem to indicate
that our convergence rate estimates for the first bifurcation coefficient are quite con-
servative. This may be due to the need to employ the Cauchy–Schwarz inequality
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3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
Log�n��28

�26

�24

�22

�20

�18

Log�Error�

Fig. 5.1. Rate of convergence of Λ(n) to the first eigenvalue λ = π2 +1/4. The equation of the
linear fit is given by y = 4.4156 − 7.22504x. Note that |λ− λ(20)| = 2.795× 10−8.

in the absence of L1 estimates (see Figures 5.1–5.4). For the problem at hand, with
ρ(x) = 1/x2, a = 1, and b = e, the exact and calculated values of ν1 for t = 1, 2, and 3
are shown in Table 5.1. The first eigenvalue and corresponding normalized eigenfunc-
tion are λ1 = π2 + 1/4 and v1(x) =

√
2 sin (lnx). Calculations were performed using

Mathematica 6.0.
We now investigate the Rayleigh–Ritz approximation for v1. Convergence of our

procedure for ν2, v2, . . . will then be clear. While this will verify convergence, the
method about to be presented appears to be impractical as a numerical algorithm for
these higher order terms.

Recall that by (2.6) v1 is the solution of

−v′′1 − ν0 ρ(x)v1 = ν1 ρ(x) v0 +
ν0
2t

ρ(x) v0 (v′0)
2t
, v1(a) = v1(b) = 0,

where by (2.8),

ν1 = −ν0
2t

(
ρ(x)v0(v

′
0)

2t, v0
)
= −ν0

2t
〈v0(v′0)2t, v0〉

with 〈v0, v0〉 = 1. With this value of ν1 and normalization of v0, this is equivalent to

(A− ν0) v1 = ν1v0 +
ν0
2t

v0 (v0
′)2t ,

or

(5.8) v1 = (A− ν0)
−1

(
ν1v0 +

ν0
2t

v0 (v0
′)2t

)
,
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1.5 2.0 2.5 3.0
Log�n�

�14

�12

�10

�8

�6

�4

�2

0

Log�Error�

Fig. 5.2. Rate of convergence of the bifurcation coefficient ν
(n)
1 to ν1 for t = 1. The equation

of the linear fit is given by y = 8.14125 − 7.29132x. Note that |ν1 − ν
(20)
1 | = 1.86× 10−6.

1.5 2.0 2.5 3.0
Log�n�

�10

�8

�6

�4

�2

0

Log�Error�

Fig. 5.3. Rate of convergence of the bifurcation coefficient ν
(n)
1 to ν1 for t = 2. The equation

of the linear fit is given by y = 10.8453 − 6.97158x. Note that |ν1 − ν
(20)
1 | = 4.3× 10−5.
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1.5 2.0 2.5 3.0
Log�n�

�6

�4

�2

0

2

Log�Error�

Fig. 5.4. Rate of convergence of the bifurcation coefficient ν
(n)
1 to ν1 for t = 3. The equation

of the linear fit is given by y = 12.4435 − 6.26615x. Note that |ν1 − ν
(20)
1 | = 1.1× 10−3.

Table 5.1

Exact and calculated values of ν1 for t = 1, 2, and 3.

t ν1 ν
(20)
1

1
−4(e−1)π4(π2+ 1

4
)(7+4π2)

e(1+20π2+64π4)
−18.008997

2
−(e2−1)π6(π2+ 1

4
)(437+824π2+144π4)

64e2(1+14π2+49π4+36π6)
−75.150141

3
−16(e3−1)π8(π2+ 1

4
)(1709+5540π2+3856π4+320π6)

9e3(729+9720π2+39312π4+52480π6+16384π8)
−571.73477

where A − ν0 has been inverted on the H0-orthogonal complement of v0, and the
component of v1 parallel to v0 is taken to be zero. We now fix our attention on the
least eigenvalue of A, i.e., ν0 = λ1 and v0 = u1, the procedure for higher eigenvalues
being entirely analogous. The spectral expansion of (5.8) is then

v1 =
ν0
2t

∞∑
j=2

〈
v0 (v′0)

2t
, uj

〉
0

λj − λ1
uj

=
λ1

2t

∞∑
j=2

〈
u1 (u′

1)
2t
, uj

〉
0

λj − λ1
uj .(5.9)D
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Recalling the Rayleigh–Ritz normalization

〈u(n)
j , u

(n)
k 〉0 = δjk, a(u

(n)
j , u

(n)
k ) = Λ

(n)
j δjk,

where we again write u
(n)
j for u

(n,1/2)
j , etc., gives

v
(n)
1 =

Λ
(n)
1

2t

n∑
j=2

〈
u
(n)
1

(
u
(n)
1

′)2t
, u

(n)
j

〉
0

Λ
(n)
j − Λ

(n)
1

u
(n)
j .

As noted previously, by Theorem 4.3, u
(n)
j → uj in C1

0 [a, b] for each j. Thus we

have term-by-term convergence in H1/2, and convergence of v
(n)
1 to v1 in H1/2 will

follow from the dominated convergence theorem for vector-valued functions (cf. [18]),

provided that ‖v(n)1 ‖1/2 is uniformly bounded with respect to n. Again using the
Rayleigh–Ritz normalization we have

‖v(n)1 ‖21/2 = a(v
(n)
1 , v

(n)
1 ) =

(
Λ
(n)
1

2t

)2 n∑
j=2

∣∣∣〈u(n)
1

(
u
(n)
1

′)2t
, u

(n)
j

〉
0

∣∣∣2 Λ(n)
j(

Λ
(n)
j − Λ

(n)
1

)2 .

This implies that

‖v(n)1 ‖21/2 ≤ c

∥∥∥∥u(n)
1

(
u
(n)
1

′)2t∥∥∥∥
2

0

≤ c ‖u1 (u1
′)2t ‖20,

and convergence in H1/2 is proved. Rates of convergence in various interpolation

norms for a fixed finite number of terms in v
(n)
1 to those in v1 follow from the preceding

theory. But this is not sufficient for estimates of the rates of convergence of v
(n)
1 to v1.

Theoretical convergence of ν
(n)
2 to ν2, v

(n)
2 to v2, etc., follow similarly.

6. Examples and remarks. Let D denote the unit ball on R
d and consider the

branching problem

−Δy + yp = λρ(x) y in D, y = 0 on ∂D,

where Δ is the Laplacian, p is an integer greater than or equal to 2, and the density
function ρ(x) is smooth and strictly positive on D. As usual ∂D denotes the boundary

of D, |x| = 1, and D is the closure of D, |x| ≤ 1. By setting y = ε
1

p−1 u, with ε small
and positive, we seek normalized solutions to

(6.1) −Δu+ ε up = λρ(x)u in D, u = 0 on ∂D.

A variant of (6.1) for a bounded simply connected domain Ω in R
2 is obtained for

−Δu+ ε up = λu in Ω, u = 0 on ∂Ω,

by use of a conformal map w = f(z), U(z) = u(w), to the unit disk D obtaining

(6.2) −ΔU + ε
∣∣∣dw
dz

∣∣∣2 Up = λ
∣∣∣dw
dz

∣∣∣2 U in D, U = 0 on ∂D
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(cf. [27]). Provided that ∂Ω is smooth so that f is conformal on ∂Ω, ρ(x) = |dwdz |2 has
a positive lower bound, and our theory applies to (6.2) as well as to (6.1) (with the
exception of strictly radial solutions of (6.1)).

Existence of solutions of (6.1) or (6.2) bifurcating from a simple eigenvalue of the
linearized (ε = 0) problem follows as in [34] by use of the Banach space C2,α(D) of
C2 functions having Hölder continuous derivatives with exponent α, 0 < α < 1. The
formalism sketched in the rotating string problem leads to the bifurcation coefficient
for (6.1),

(6.3) ν1 =

∫
D

up+1 dx,

where u is the eigenvector corresponding to the simple eigenvalue λ of (6.1) with ε set
equal to zero and normalized by

∫
D ρ(x)u2 dx = 1. An analogous formula holds for

(6.2), and we assume that ρ(x) is such that u is unknown so that we must approximate
u appropriately to approximate ν1.

The interpolation theory is directly analogous to that previously detailed in the
rotating string problem. The eigenvalue problem for the operator A is given by

Av0 = −1

ρ
Δv0 in D, v0 = 0 on ∂D,

with D(A) = H2(D) ∩H1
0 (D). The operator A is self-adjoint in L2(D) with measure

ρ(x)dx. As M we take

Mv = −Δv in D, v = 0 on ∂D,

which is self-adjoint in G0 = L2(D) with Lebesgue measure, dx. As previously, D(A) =
D(M) with equivalent norms, and since Av = 0 on ∂D if and only if −Δv = Mv = 0
on ∂D, we have D(A2) = D(M2) with equivalent norms (cf. [29] for the regularity
theory). But if v ∈ D(A3), then

A2 v = −1

ρ
Δ

(
−1

ρ
Δ

)

=
1

ρ

(
1

ρ
Δ2v + 2∇

(
1

ρ

)
· ∇ (Δv) + Δ

(
1

ρ

)
Δv

)
,

where ∇ = gradient, must vanish on ∂D. On ∂D, the latter is

(6.4) A2 v =
1

ρ

(
1

ρ
Δ2v + 2∇

(
1

ρ

)
· ∇ (Δv)

)
,

and if v ∈ D(M3), then

(6.5) M2 v = Δ2v

must vanish on ∂D. Since v ∈ D(A) = D(M), Δv = 0 on ∂D, and so ∇ (Δv) is
orthogonal to ∂D, and (6.4) and (6.5) are the same boundary conditions if ∇( 1ρ) is

tangential to ∂D (or vanishes there). We now show that when this is not the case
the boundary conditions (6.4) and (6.5) are not equivalent. This leads to the same
critical value τ = 9/4 as in the rotating string example.

So suppose there is a point P on ∂D where ∇( 1ρ) · −→n 
= 0, where −→n is the unit
outward normal to ∂D. By continuity there is a relative neighborhood N of P in ∂D
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3010 W. M. GREENLEE AND L. HERMI

on which ∇( 1ρ) · −→n is nonzero of a fixed sign. Now note that if u is an eigenfunction

of A with eigenvalue λ, the boundary condition A2u = 0 becomes

Δ2u = 2λρ∇
(
1

ρ

)
· ∇u = 2λρ∇

(
1

ρ

)
· −→n ∂u

∂n
on ∂D,

since ∇u is orthogonal to ∂D. If there is a point of N at which ∂u
∂n 
= 0, there is a

relative neighborhood N ′ ⊂ N of P on which ∂u
∂n is nonzero of fixed sign. Then the

boundary conditions (6.4) and (6.5) define different closed subspaces of H6(D), i.e.,
D(A3) 
= D(M3). The other possibility is that ∂u

∂n = 0 on N . But then u has zero
Cauchy data on N . Since D is strictly convex at P , by [32] there is a disk S centered
at P with u ≡ 0 on D ∩ S. But then, by a theorem of [31] (cf. also [32]), u ≡ 0 on D,
contrary to u being an eigenfunction of A.

So if ∇( 1ρ) is not tangential (or zero) at any point of ∂D, the results of [23] give,

by interpolation between D(A3) and D(A2), and between D(M3) and D(M2), that
D(Aν) = D(Mν) for all ν < 9/4. By details in [23] not elaborated on in section 2,
ν cannot be increased to 9/4. Direct application of Propositions 3.2 and 4.1 and
Theorems 4.5 and 4.6 now proceed exactly as in the rotating string example. For
example, Proposition 3.2 gives the Rayleigh–Ritz eigenvalue approximation

Λ
(n,1/2)
j = λj + o(μ1−2σ

n+1 ) for all σ < 9/4

as n → ∞. However, in R
d, μn+1 ≈ c n2/d (cf. [41]) so that

Λ
(n,1/2)
j = λj + o(n2(1−2σ)/d) for all σ < 9/4

as n → ∞.
Before looking at rates of convergence for Rayleigh–Ritz or harmonic Ritz approx-

imations to the bifurcation coefficient (6.3) we look, as in the rotating string example,
to improve these estimates to “big oh at 9/4” by multidimensional integration by
parts. With u an eigenfunction of A, i.e.,

−Δu = λρ(x)u in D, u = 0 on ∂D,

and qk an eigenfunction of M , i.e.,

−Δqk = μk qk in D, qk = 0 on ∂D,

we recall the Lagrange–Green identity

(6.6)

∫
D
(uΔqk − qkΔu) dx =

∫
∂D

(
u
∂qk
∂n

− qk
∂u

∂n

)
dS.

Herein, as previously, ∂
∂n is a differentiation in the outward normal direction to ∂D.

By first substituting Δ2u for u, and then Δu for u in (6.6), we obtain

(6.7)

∫
D
uqkdx =

1

μ3
k

∫
D
qk Δ

3udx+
1

μ3
k

∫
∂D

∂qk
∂n

Δ2udS.

To obtain (6.7) we have also used u = Δu = qk = 0 on ∂D. Equation (6.7) is the
multidimensional analogue of (5.4), and since ∂qk

∂n = ∇qk · −→n and div(grad qk) = Δqk,
we expect that ∫

D
uqkdx = O(μ

−5/2
k ) as k → ∞,
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as in the one-dimensional case. But verification of (4.3) is problematic, unless we
restrict ourselves to the radially symmetric case, i.e., that ρ depends only on the
radial variable. The problem arises with the denominator of (4.3).

Now we treat the two-dimensional case in some detail, with later comments on
higher dimensions. In the usual polar coordinates, the eigenvalue problem for qk is
now

−
(
∂2qk
∂r2

+
1

r

∂qk
∂r

+
1

r2
∂2qk
∂θ2

)
= μk qk for r < 1, qk = 0 for r = 1.

Separation of variables yields the eigenvalues

μm,s = j2m,s,

where jm,s is the sth positive zero of the Bessel function Jm. These must be ordered
in an increasing sequence to obtain the μk’s. For m = 0, the eigenvalues j20,s of M
are simple with normalized radial eigenfunctions

q0,s(r, θ) =
1√
π

J0(j0,sr)

J1(j0,s)
, s = 1, 2, . . . ,

while for m = 1, 2, . . . the eigenvalues j2m,s of M are double with normalized eigen-
functions

q(1)m,s(r, θ) =

√
2

π

Jm(jm,sr)

Jm+1(jm,s)
cosmθ

and

q(2)m,s(r, θ) =

√
2

π

Jm(jm,sr)

Jm+1(jm,s)
sinmθ

for s = 1, 2, . . . (cf. [1], [25]). Since the outward normal derivative is given by differ-
entiation with respect to r at r = 1, we get

∂q0,s
∂r

∣∣
r=1

=
(−1)s+1

√
π

j0,s, m = 0, s = 1, 2, . . . ,

and for m = 1, 2, . . . ,

∂q
(1)
m,s

∂r

∣∣
r=1

=

√
2

π
jm,s (−1)s+1 cosmθ

and

∂q
(2)
m,s

∂r

∣∣
r=1

=

√
2

π
jm,s (−1)s+1 sinmθ

for s = 1, 2, . . . . So the expectation that (6.7) gives
∫
D u qkdx = O(μ

−5/2
k ) is borne

out.
In the radial case we have μs = j0,s = (s − 1

4 )π + O(1s ) as s → ∞ [1], and
an analysis like that in the rotating string example shows that (4.3) is satisfied with
1
2 ≤ τ < 11

8 . So in the radial case, using the fact that the Sobolev inequalities (cf. [24])
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3012 W. M. GREENLEE AND L. HERMI

imply that convergence in Hτ for any τ > 1/2 implies uniform convergence, Theorems
4.3 and 4.5 give convergence of the Rayleigh–Ritz approximation to ν1 in (6.3) at the
rate of O(n−9/4). This is the same rate of convergence as that for the Rayleigh–Ritz
approximation to the eigenvector u in the L2 norm.

In the nonradial case one can invoke Proposition 4.1 and Theorem 4.6 to obtain

the convergence rate O(μ
−7/4
n+1 ) = O(n−7/4) for the harmonic Ritz approximation to ν1,

since the eigenvector approximation is uniform. The Rayleigh–Ritz method can also
be employed via the Sobolev inequality

(6.8) H1(D) ⊂c W
t
q (D) ⊂c W

0
q (D) = Lq(D),

where q > 2 and t = 2
q (cf. [24]). So convergence of u(n) to u in H1(D) implies that

u(n) is bounded in Lq(D) for any q > 2. Thus Hölder’s inequality yields convergence
of the Rayleigh–Ritz approximation to ν1 in Lq′(D), 1

q + 1
q′ = 1. This is majorized

by convergence in L2(D), where the rate is at least O(μ
−9/4
n+1 ) = O(n−9/4) as n → ∞,

by Theorem 4.5.
For dimensions higher than two, one may employ spherical harmonics and

Rayleigh–Ritz as above for p = 2 and p = 3 in dimension three, and for p = 2 in
dimension four. The limitations on p stem from the need for t ≥ 0 in the analogues
of (6.8) [24]. Harmonic Ritz is directly applicable for any power p in dimension three
via uniform convergence. Further conclusions can be obtained from Theorems 4.3
and 4.5 in the radial case. One can also consider “derivative nonlinearities” such as
|∇u|2 in place of up in (6.1) for further examples, and the addition of linear potential
terms q(x)u. The dimensional dependence of the various conclusions comes from the
Sobolev inequalities.

We now close with some remarks. For domains with shapes other than balls
the main constraint on the preceding methods is the availability of computable ap-
proximate eigenvectors, the qk’s. Such are obviously available for rectangles, or for
two-dimensional domains mapped conformally onto rectangles. But the interpolation
results of [23] are not applicable. Theorems of [22] do apply in the case of homogeneous
Dirichlet boundary conditions for A, but only up to τ = 1. So the theory of quadratic
interpolation between closed subspaces of Sobolev spaces determined by homogeneous
boundary conditions is currently inadequate to obtain results corresponding to the
previous over domains with corners.

The finite element method is of course well adapted to the construction of approx-
imate eigenvectors over domains with irregular shapes. One estimates the projections
in Theorem 3.1 by use of the “approximation theorem,” as detailed for τ = 1/2 in [36].
Finite element versions of Theorem 3.1, Propositions 3.2 and 4.1, and Theorems 4.5
and 4.6 are attainable. But Theorems 4.3 and 4.4 each depend on an analogue of
the “inverse inequality” of the spectral Galerkin literature (cf. [30]). It is an open
problem as to whether the inverse estimates of finite element theory [14] can be sim-
ilarly applied. Quadratic interpolation between closed subspaces of Sobolev spaces
determined by homogeneous boundary conditions in the context of the finite element
method is considered in [13], whose results supplement those of [22], and in [14]. In
the latter reference the effect of the boundary conditions in quadratic interpolation is
not presented, but it does not affect the rates of convergence due to the construction
of the finite elements. It does, however, affect the norms of the interpolation spaces
in the “exceptional” cases.

We have concentrated on the problem of estimation of bifurcation coefficients.
But the theorems of section 4 are also germane to estimating eigenvalue bounds by
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the so-called eigenvector free (EVF) method. These bounds are complementary to the
Rayleigh–Ritz bounds, and hence provide explicit error estimates. The EVF technique
was originated in [19], and our results herein relate to the convergence theory of [10].
This problem remains to be explored.

Appendix. We give the proof of Theorem 3.1 in the case τ = 1/2, i.e., regular
Rayleigh–Ritz. This enables us to simplify notation by writing ‖ ‖a for ‖ ‖1/2,
Pn for Pn,1/2, and Λ

(n)
j for Λ

(n,1/2)
j . The theorem as stated is obtained simply by

substituting τ for 1/2 in the appropriate places. Note that for τ < 1/2, this replaces
H = H0 by H = Hτ−1/2, a “negative norm” space.

Proof. Let E� = span{u1, . . . , u�}, and let e� be the set of vectors in E� which are
normalized in H. The first step is to prove that if

ρ
(n)
� = max

u∈e�

∣∣2Re〈u, u− Pnu〉 − ‖u− Pnu‖2
∣∣ < 1,

then

(A.1) Λ
(n)
� ≤ λ�

1− ρ
(n)
�

.

Inequality (A.1) will follow easily from the minimax principle, provided that PnE� is
�-dimensional. To see this, observe that if PnE� has dimension less than �, there exists
w ∈ e� with Pnw = 0. But then

ρ
(n)
� ≥ ∣∣2Re〈w,w − Pnw〉 − ‖w − Pnw‖2

∣∣ = ‖w‖2 = 1.

Thus, if ρ
(n)
� < 1, which by completeness of the Rayleigh–Ritz trial vectors is true,

then for n large

Λ
(n)
� ≤ max

v∈PnE�

a(v)

‖v‖2 = max
u∈e�

a(Pnu)

‖Pnu‖2 .

Since Pn is an orthogonal projection in D(a), a(Pnu) ≤ a(u), and also for u in e�,

‖Pnu‖2 = ‖u− (u− Pnu)‖2
= ‖u‖2 − 2Re〈u, u− Pnu〉+ ‖u− Pnu‖2
≥ 1− ρ

(n)
� .

Thus if ρ
(n)
� < 1,

Λ
(n)
� ≤ max

u∈e�

a(u)

1− ρ
(n)
�

=
λ�

1− ρ
(n)
�

,

or, equivalently,

1

Λ
(n)
�

≥ 1− ρ
(n)
�

λ�
,

the corresponding estimate for eigenvalues of T .
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3014 W. M. GREENLEE AND L. HERMI

The second term in the definition of ρ
(n)
� is dominated by ‖ (I − Pn) Q�‖2, where

Q� is the orthogonal projection onto E�. To obtain an analogous estimate for 〈u, u−
Pnu〉, first write u ∈ e� as u =

∑�
i=1 ciui. Then

〈ui, u− Pnu〉 = λ−1
i a(ui, u− Pnu)

= λ−1
i a(ui − Pnui, u− Pnu),

since Pn is an orthogonal projection in D(a). Thus if u ∈ e�,

〈u, u− Pnu〉 =
�∑

i=1

ciλ
−1
i a(ui − Pnui, u− Pnu),

and so

2
∣∣Re〈u, u− Pnu〉

∣∣ = 2

∣∣∣∣∣
�∑

i=1

Re ciλ
−1
i a(ui − Pnui, u− Pnu)

∣∣∣∣∣
≤ 2‖u− Pnu‖a

�∑
i=1

‖ciλ−1
i (I − Pn)ui‖a.

Now, since u ∈ e�,

‖u− Pnu‖a = ‖ (I − Pn)Q�u‖a
≤ ‖ (I − Pn)Q�‖a ‖u‖a,

‖u‖a =

�∑
i=1

|ci|2λi ≤ λ�

�∑
i=1

|ci|2 = λ�,

and so

‖u− Pnu‖a ≤ λ
1/2
� ‖ (I − Pn)Q�‖a.

Finally,

�∑
i=1

‖ciλ−1
i (I − Pn)ui‖a ≤

�∑
i=1

|ci|λ−1
i ‖ (I − Pn)Q�ui‖a

≤ ‖ (I − Pn)Q�‖a
�∑

i=1

|ci|λ−1
i ‖ui‖a

= ‖ (I − Pn)Q�‖a
�∑

i=1

|ci|λ−1/2
i

since ‖ui‖ = λ
1/2
i . The Cauchy–Schwarz inequality now yields

max
u∈e�

2
∣∣Re〈u, u− Pnu〉

∣∣ ≤ 2λ
1/2
�

�∑
i=1

λ
−1/2
i ‖ (I − Pn)Q�‖2a
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since
∑�

i=1 |ci|2 = 1. Thus we have the eigenvalue estimates

0 ≤ Λ
(n)
� − λ� ≤ Λ

(n)
�

⎛
⎝‖(I − Pn)Q�‖2 + 2λ�

(
�∑

i=1

λ−1
i

)1/2

‖(I − Pn)Q�‖2a

⎞
⎠ ,

or, equivalently,

0 ≤ 1

λ�
− 1

Λ
(n)
�

≤ 1

λ�

⎛
⎝‖(I − Pn)Q�‖2 + 2λ�

(
�∑

i=1

λ−1
i

)1/2

‖(I − Pn)Q�‖2a

⎞
⎠ .

To derive the eigenvector estimates, first note that ‖u�‖ = ‖u(n)
� ‖ = 1, so

a(u� − u
(n)
� ) = a(u�)− 2Re a(u�, u

(n)
� ) + a(u

(n)
� )

= λ� − 2λ�Re 〈u�, u
(n)
� 〉+ Λ

(n)
�

= λ�

(
2− 2Re 〈u�, u

(n)
� 〉

)
+ Λ

(n)
� − λ�

= λ�

(
‖u�‖2 − 2Re 〈u�, u

(n)
� 〉+ ‖u(n)

� ‖2
)
+ Λ

(n)
� − λ�

= λ�‖u� − u
(n)
� ‖2 + Λ

(n)
� − λ�.

So to estimate the error in energy it remains to obtain an estimate for ‖u� − u
(n)
� ‖.

To do this we will need the simple identity

(
Λ
(n)
j − λ�

)
〈Pnu�, u

(n)
� 〉 = a(Pnu�, u

(n)
j )− λ�〈Pnu�, u

(n)
j 〉

= λ�〈u� − Pnu�, u
(n)
� 〉,(A.2)

valid for any normalized eigenvectors u� corresponding to λ�, and u
(n)
� corresponding

to Λ
(n)
� . For use in what follows, please observe that in (A.2) the eigenvector u� can

be selected in an n-dependent fashion in the λ� eigenspace.

So let λ� = λ�+1 = · · · = λ�+K have multiplicity K + 1, and define δ > 0 by

δ = dist({λ�}, σ(A)− {λ�}).

Choose 0 < κ < 1. Then by the preceding there exists N , depending on κ, such that
for all n ≥ N and j such that λj 
= λ�,

|Λ(n)
j − λ�| ≥ κδ.

Pick an H-orthonormal basis {v�+k}Kk=0 for the λ� eigenspace, QH, and write

u ∈ QH as u =
∑K

k=0 ckv�+k. Then since {u(n)
j }�j=1 is an orthonormal basis for PnH,

Pnu =

n∑
j=1

〈Pnu, u
(n)
j 〉u(n)

j , u ∈ QH.
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Then by (A.2)∥∥∥∥∥∥Pnu−
n∑

λj=λ�

〈Pnu, u
(n)
j 〉u(n)

j

∥∥∥∥∥∥
2

=
∑

λj �=λ�

|〈Pnu, u
(n)
j 〉|2

=

n∑
λj �=λ�

(
λ�

Λ
(n)
j − λ�

)2

|〈u − Pnu, u
(n)
j 〉|2

≤ λ2
�

κ2δ2

n∑
λj �=λ�

|〈u− Pnu, u
(n)
j 〉|2

≤ λ2
�

κ2δ2
‖u− Pnu‖2.

Herein
∑n

λj=λ�
denotes the sum over those indices j from 1 to n for which λj = λ�,

and similarly for the symbol
∑n

λj �=λ�
. Thus for any normalized u ∈ QH∥∥∥∥∥∥u−

n∑
λj=λ�

〈Pnu, u
(n)
j 〉u(n)

j

∥∥∥∥∥∥ ≤ ‖u− Pnu‖+
∥∥∥∥∥∥Pnu−

n∑
λj=λ�

〈Pnu, u
(n)
j 〉u(n)

j

∥∥∥∥∥∥
≤
(
1 +

λ�

κδ

)
‖u− Pnu‖.(A.3)

This shows that u ∈ QH can be approximated by a linear combination of Rayleigh–
Ritz eigenvectors.

To proceed further we first assume that λ� is a simple eigenvalue of A with
normalized eigenvector u = u�. What then needs to be estimated is the difference

between 〈Pnu�, u
(n)
� 〉 and 1 as n → ∞. For this purpose note that we are free to

orient the unit vectors u� and u
(n)
� so that 〈Pnu�, u

(n)
� 〉 is real and nonnegative, which

minimizes ‖u� − 〈Pnu�, u
(n)
� 〉u(n)

� ‖2. Note that this may make u� depend on n by a

scalar of magnitude 1. Then, since 〈Pnu�, u
(n)
� 〉 ≥ 0,

‖u�‖ − ‖u� − 〈Pnu�, u
(n)
� 〉u(n)

� ‖ ≤ ‖〈Pnu�, u
(n)
� 〉u(n)

� ‖
≤ ‖u�‖+ ‖u� − 〈Pnu�, u

(n)
� 〉u(n)

� ‖(A.4)

is the same as

|〈Pnu�, u
(n)
� 〉 − 1| ≤ ‖u� − 〈Pnu�, u

(n)
� 〉u(n)

� ‖,
so by (A.3)

‖u� − u
(n)
� ‖ ≤ ‖u� − 〈Pnu�, u

(n)
� 〉u(n)

� ‖+
∥∥∥(〈Pnu�, u

(n)
� 〉 − 1

)
u
(n)
�

∥∥∥
≤ 2‖u� − 〈Pnu�, u

(n)
� 〉u(n)

� ‖
≤ 2

(
1 +

λ�

κδ

)
‖u� − Pnu�‖.(A.5)

Now again let λ� = λ�+1 = · · · = λ�+K have multiplicity K + 1 and let Γn be the
(K + 1)× (K + 1) matrix given by

Γn =
[
〈Pnv�+k, u

(n)
�+m〉

]K
k,m=0

.
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Further let V and U (n) be the column vectors

V =

⎡
⎢⎢⎢⎣

v�
v�+1

...
v�+K

⎤
⎥⎥⎥⎦ , U (n) =

⎡
⎢⎢⎢⎢⎣

u
(n)
�

u
(n)
�+1
...

u
(n)
�+K

⎤
⎥⎥⎥⎥⎦ .

The estimate (A.3) shows that for each k = 0, 1, . . . ,K,

K∑
m=0

〈Pnv�+k, u
(n)
�+m〉u(n)

�+m → v�+k

in H as n → ∞, i.e.,

ΓnU
(n) → V

in HK+1 as n → ∞. It follows that for large n, Γn has rank K+1, and so is invertible.
Inversion of Γn would yield a suitable basis for QH to complete the proof, provided
that it is shown that the inverse is bounded with a bound independent of n. It appears
that a diagonalization procedure which enables us to mimic the simple eigenvalue case
yields a more direct route to an explicit estimate. So let u =

∑K
k=0 ckv�+k ∈ QH

with ‖u‖ = 1. Then

Pnu =
K∑

k=0

ckPnv�+k =
n∑

j=1

〈
K∑

k=0

ckPnv�+k, u
(n)
j

〉
u
(n)
j .

Since Γn has rank K + 1, for each fixed j = �, � + 1, . . . , � + K the system of K
equations in K + 1 unknowns,

K∑
k=0

ck〈Pnv�+k, u
(n)
i 〉 = 0, � ≤ i 
= j ≤ �+K,

has a one-parameter family of solutions,(
c
(n)
j,� , c

(n)
j,�+1, . . . , c

(n)
j,�+K

)
.

For each j = �, �+ 1, . . . , �+K, fix the solution by requiring that
∑K

k=0 |c(n)j,�+k|2 = 1
and that the unit vector

uj,n =

K∑
k=0

c
(n)
j,�+kv�+k

in QH satisfies

〈Pnuj,n, u
(n)
j 〉 ≥ 0.

We now replace the arbitrarily chosen basis {vj}�+K
j=� for QH with the basis {uj,n}�+K

j=� .
In place of Γn and V we now have

Δn =
[
〈Pnu�+k,n, u

(n)
�+m〉

]K
k,m=0
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and

Un =

⎡
⎢⎢⎢⎣

u�,n

u�+1,n

...
u�+K,n

⎤
⎥⎥⎥⎦ ,

respectively. Note that by construction

ΔnU
(n) =

⎡
⎢⎢⎢⎢⎣

〈Pnu�,n, u
(n)
� 〉u(n)

�

〈Pnu�+1,n, u
(n)
�+1〉u(n)

�+1
...

〈Pnu�+K,n, u
(n)
�+K〉u(n)

�+K

⎤
⎥⎥⎥⎥⎦ .

This diagonalization yields the estimate

‖u�+k,n − u
(n)
�+k‖ ≤ 2

(
1 +

λ�

κδ

)
‖u�+1,n − Pnu�+k,n‖, k = 0, 1, . . . ,K,

exactly as in the one-dimensional case, (A.4), (A.5). Hence, for each j = 1, . . . , � there
exists a normalized eigenvector uj,n of A such that

‖uj,n − u
(n)
j ‖ ≤ 2

(
1 +

λ�

κδ

)
‖(I − Pn)Q‖,

where Q is the orthogonal projection onto the λj eigenspace.
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