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Abstract

We derive differential inequalities and difference inequalities for Riesz means of eigenvalues of the
Dirichlet Laplacian,

Rρ(z) :=
∑
k

(z − λk)
ρ
+.

Here {λk}∞k=1 are the ordered eigenvalues of the Laplacian on a bounded domain Ω ⊂ R
d , and

x+ := max(0, x) denotes the positive part of the quantity x. As corollaries of these inequalities, we derive
Weyl-type bounds on λk , on averages such as λk := 1

k

∑
��k λ�, and on the eigenvalue counting function.

For example, we prove that for all domains and all k � j
1+d/2
1+d/4 ,

λk

λj

� 2

(
1 + d/4

1 + d/2

)1+2/d(
k

j

)2/d

.
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1. Introduction

This article is concerned with the spectrum of the Laplace operator −� on a bounded Euclid-
ean domain Ω ⊂ R

d , d � 1, with vanishing Dirichlet boundary conditions on ∂Ω , i.e., the classic
problem of the vibratory modes of a finite elastic body with fixed boundary. With straightforward
changes it is also possible to treat Schrödinger operators −� + V (x) with discrete spectra. In-
deed, virtually no changes at all are necessary when V (x) � 0, other than possibly the upper
bound in (2.11). For simplicity of exposition, however, we refer below only to the Laplacian.

The spectrum {λk}∞k=1, of −� is subject to the Weyl law [10,15,32,36],

λk ∼ 4π
(	(1 + d

2 ))
2
d

|Ω| 2
d

k
2
d (1.1)

as k → ∞; to the Berezin–Li–Yau inequality [11,26,28,29,31],

λk := 1

k

∑
��k

λ� � 4π
(	(1 + d

2 ))
2
d

|Ω| 2
d

k
2
d

1 + 2
d

; (1.2)

and to other familiar constraints relating the spectrum to the geometry of Ω . The Berezin–Li–Yau
inequality is a notable example of an inequality for which both sides are of the same order in k,
when the asymptotic expression in (1.1) is substituted for λk . A formula or expression where this
is the case is said to be of Weyl-type.

At the same time, the spectrum is subject to “universal bounds” by which certain expressions
involving eigenvalues dominate others with no reference to the geometry of Ω . The expres-
sions occurring in known universal bounds include moments of eigenvalues, in particular sums∑k

j=1 λj as in Berezin–Li–Yau. (See [3,22] for a review of universal spectral bounds.) Although
early universal bounds like that of Payne, Pólya, and Weinberger [33] were not of Weyl-type,
universal bounds of Weyl-type have been known since H.C. Yang’s unpublished 1991 article [3,
7–9,13,14,21,22,30,37].

One of the goals here is to show that trace identities of the type introduced in [21] imply tight,
Weyl-type bounds on ratios of eigenvalues belonging to Laplace spectra. To our knowledge this
has not been much explored except by Hermi [22] and by Cheng and Yang in [14], with some
remarks in [13]. Analogous bounds for Schrödinger operators in one dimension can be found in
the work of Ashbaugh and Benguria [4]. Ratios involving averages λk will arise in a natural way
through this analysis.

The earliest bound for the ratio of a large eigenvalue to the fundamental eigenvalue is due to
Ashbaugh and Benguria [6], who proved

λ2m

λ1
�

(
j2
d/2,1

j2

)m

. (1.3)

d/2−1,1
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While optimal for low-lying eigenvalues, (1.3) is not of Weyl-type since the right-hand side of
the inequality behaves like k5.77078/d as k → ∞ (see the details in [22]). Weyl-type bounds were
proved in [22], of the form

λk+1

λ1
� 1 +

(
1 + d

2

) 2
d

H
2
d

d k
2
d , (1.4)

and

λk

λ1
� 1 + H

2/d
d

1 + 2
d

k2/d , (1.5)

where

Hd = 2 d

j2
d/2−1,1J

2
d/2(jd/2−1,1)

. (1.6)

As usual, jα,p denotes the pth positive zero of the Bessel function Jα(x) [1]. In [14] Cheng and
Yang prove that

λk+1

λ1
�

(
1 + 4

d

)
k

2
d , (1.7)

as well as some incremental improvements for large values of k, d of the form

λk+1

λ1
� C0(d, k)k

2
d . (1.8)

For instance, for k � d + 1, Cheng and Yang [14] improve (1.7) to

λk+1

λ1
�

(
1 + 4

d

)(
1 + 8

d + 1
+ 8

(d + 1)2

) 1
2

(d + 1)−
2
d k

2
d . (1.9)

For comparison, by combining the Weyl law with the Rayleigh–Faber–Krahn inequality
[18,24,25], there immediately results an asymptotic upper bound on λk/λ1, of the form

4π

λ∗
1

(	(1 + d
2 ))

2
d

|Ω| 2
d

k
2
d = 4(	(1 + d

2 ))
4
d

j2
d
2 −1,1

k
2
d , (1.10)

where

λ∗
1 =

πj2
d
2 −1,1

(	(1 + d
2 )|Ω|) 2

d

is the explicit value of the fundamental eigenvalue when Ω is a ball.
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Ideally, a Weyl-type bound would contain a constant commensurate with that on the
right-hand side of (1.10). The bound of (1.7) is numerically nearly 4.34 times as large as the
ideal when d = 2. It will be shown below that the constants in (1.7) and (1.9) can be reduced.
(See Table 3 below.)

Our technique will make use of differential inequalities and difference inequalities for Riesz
means of eigenvalues. Safarov, Laptev, and Weidl have long advocated Riesz means as a tool for
understanding inequalities like those of Lieb–Thirring and Berezin–Li–Yau, and we draw some
of our inspiration from [26–29,34,35].

2. Differential and difference inequalities for Riesz means of eigenvalues

For background information we refer to the monograph of Chandrasekharan and Mi-
nakshisundaram [12], where Riesz means are referred to as typical means. Recall that if {λk}∞k=1
is an increasing sequence of real numbers, then for any real z, the Riesz mean of order ρ of {λk}
can be defined as

Rρ(z) :=
∑

k

(z − λk)
ρ
+ (2.1)

for ρ > 0. When ρ = 0, we interpret R0(z) as the eigenvalue-counting function R0(z) :=
N (z) := limρ↓0 Rρ(z).

One of the main results consists of differential inequalities for Rρ(z) with respect to z and
difference inequalities for Rρ(z) with respect to ρ.

Theorem 2.1. For 0 < ρ � 2 and z � λ1,

Rρ−1(z) �
(

1 + d

4

)
1

z
Rρ(z), (2.2)

R′
ρ(z) �

(
1 + d

4

)
ρ

z
Rρ(z), (2.3)

and consequently

Rρ(z)

zρ+ dρ
4

is a nondecreasing function of z.
For 2 � ρ < ∞ and z � λ1,

Rρ−1(z) �
(

1 + d

2ρ

)
1

z
Rρ(z), (2.4)

R′
ρ(z) �

(
ρ + d

2

)
1

z
Rρ(z), (2.5)

and consequently

Rρ(z)

zρ+ d
2

is a nondecreasing function of z.
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Remark 2.2. 1. The values of z are restricted for the simple reason that Rρ(z) = 0 for ρ > 0,
z � λ1, and is undefined for ρ � 0, z � λ1.

2. It is only necessary to prove (2.2) and (2.4), since from (2.1),

R′
ρ(z) = ρRρ−1(z),

and since solving the elementary differential inequalities (2.3) and (2.5) easily yields the remain-
ing statements about functions of the form Rρ(z)/zp .

3. In the case ρ = 2, (2.4) is related to the inequality of H.C. Yang [8,20,21,30,37].
4. Differential inequalities were considered in [21] for the partition function (or trace of the

heat kernel) Z(t) := tr(et�), where it was shown that Z(t)td/2 is a nonincreasing function. In
a future article [20], it will be shown that the differential inequalities of Theorem 2.1 imply the
equivalence of the Berezin–Li–Yau inequality and a classical inequality due to Kac [23] about
the partition function.

To prepare the proof we state two lemmas.

Lemma 2.1. Denoting the L2-normalized eigenfunctions of the Laplace operator {uj }, let

Tαjm :=
∣∣∣∣
(

∂uj

∂xα

,um

)∣∣∣∣
2

for j,m = 1, . . . and α = 1, . . . , d . Then for each fixed α,

Rρ(z) = 2
∑

j,m: λj 	=λm

(z − λj )
ρ
+ − (z − λm)

ρ
+

λm − λj

Tαjm + 4
∑

j,q: λj �z<λq

(z − λj )
ρ

λq − λj

Tαjq . (2.6)

This lemma is the trace identity of Harrell and Stubbe [21, Theorem 1, (4)], specialized to
f (λ) = (z − λ)

ρ
+. Versions of the trace identity of [21] also appear in some later articles, e.g.,

[7,8,16,30].

Lemma 2.2. Let 0 < x < y and ρ � 0. Then

yρ − xρ

y − x
� Cρ

(
yρ−1 + xρ−1), (2.7)

where

Cρ :=
⎧⎨
⎩

ρ
2 , if 0 � ρ < 1,

1, if 1 � ρ � 2,
ρ
2 , if 2 � ρ < ∞.

Proof. By a scaling, it suffices to assume x = 1. We then seek the supremum of

yρ − 1
ρ−1
(y − 1)(y + 1)
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for 1 < y < ∞. A calculus exercise shows that the supremum is approached as y ↓ 1 when
0 < ρ < 1 or 2 � ρ < ∞, whereas it is approached as y → ∞ when 1 � ρ � 2. (It is a constant
when ρ = 2.) The stated values are obtained with l’Hôpital’s rule in the cases 0 < ρ < 1 and
2 � ρ < ∞. �
Proof of Theorem 2.1. Let the first term on the right-hand side of (2.6) be

G(ρ, z,α) := 2
∑

j,m: λj 	=λm

(z − λj )
ρ
+ − (z − λm)

ρ
+

λm − λj

Tαjm.

By Lemma 2.2, this expression simplifies to

G(ρ, z,α) = 2
∑

j,m: λj,m�z,λj 	=λm

(z − λj )
ρ − (z − λm)ρ

(z − λj ) − (z − λm)
Tαjm

� 2Cρ

∑
j,m: λj,m�z

(
(z − λj )

ρ−1 + (z − λm)ρ−1)Tαjm

= 4Cρ

∑
j,m: λj,m�z

(z − λj )
ρ−1
+ Tαjm

by symmetry in j ↔ m. Extending the sum to all m and subtracting the same quantity from the
final term in (2.6), we find

Rρ(z) � 4Cρ

∑
j : λj �z, all m

(z − λj )
ρ−1
+ Tαjm + 4H(ρ, z,α), (2.8)

where

H(ρ, z,α) :=
∑

j,q: λj �z<λq

Tαjq(z − λj )
ρ−1

(
(z − λj ) − Cρ(λq − λj )

λq − λj

)
. (2.9)

Next observe that because {um} is a complete orthonormal set,

∑
m

Tαjm =
∥∥∥∥∂uj

∂xα

∥∥∥∥
2

2

and thus
∑
m,α

Tαjm = ‖∇uj‖2
2 = λj .

Therefore we may average over α = 1, . . . , d in (2.8) to obtain

Rρ(z) � 4Cρ

d

∑
(z − λj )

ρ−1
+ λj + 4

d

d∑
H(ρ, z,α),
j α=1
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or, since

∑
j

(z − λj )
ρ−1
+ λj = zRρ−1(z) − Rρ(z),

(
1 + 4Cρ

d

)
Rρ − 4zCρ

d
Rρ−1(z) � 4

d

d∑
α=1

H(ρ, z,α). (2.10)

We consider three cases.

Case I. 1 � ρ � 2. In this case Cρ = 1 and H(ρ, z,α) � 0, establishing that

(
1 + 4

d

)
Rρ − 4z

d
Rρ−1(z) � 0,

which is equivalent to (2.2) for this range of ρ.

Case II. 0 < ρ < 1. Since the sum defining H runs over λq > z,

(z − λj ) − Cρ(λq − λj )

λq − λj

� (λq − λj ) − Cρ(λq − λj )

λq − λj

= 1 − Cρ.

Therefore

H(ρ, z,α) � (1 − Cρ)
∑

j,q: λq�z

Tαjq(z − λj )
ρ−1
+ ,

and since in this case 1 − Cρ = 1 − ρ/2 > 0, we may extend the sum over all q , obtaining

d∑
α=1

H(ρ, z,α) � (1 − Cρ)
∑
j

λj (z − λj )
ρ−1
+ .

Substituting this into (2.10), there is a cancellation of the Cρ ’s, and we again obtain

(
1 + 4

d

)
Rρ − 4z

d
Rρ−1(z) � 0,

equivalent to (2.2).

Case III. ρ > 2. Arguing as in Case II, we come as far as

H(ρ, z,α) � (1 − Cρ)
∑

j,q: λ �z<λ

Tαjq(z − λj )
ρ−1,
j q
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but since now (1 −Cρ) = 1 −ρ/2 < 0, we cannot extend the sum in q to simplify Tαjq , and only
conclude that

(
1 + 4Cρ

d

)
Rρ − 4zCρ

d
Rρ−1(z) � 0,

which is (2.4). �
Convexity provides insight into why the proof divides into three ranges of ρ. The Riesz

mean Rρ(z) loses convexity in z when ρ < 1, and its derivative loses convexity already when
ρ < 2. Thus both ρ = 1 and 2 are values at which necessary inequalities in the proof reverse.

Since by the theorem, Rρ(z)z−p is a nondecreasing function for appropriate values of p, we
obtain lower bounds of the form Rρ(z) � Czp for all z � z0 as soon as Rρ(z0) is known, or
estimated from below. Upper bounds can be obtained from the limiting behavior of Rρ(z) as
z → ∞, as given by the Weyl law.

Corollary 2.3. For all ρ � 2 and z � (1 + 2ρ
d

)λ1,

(
2ρ

d

)ρ

λ
− d

2
1

(
z

1 + 2ρ
d

)ρ+ d
2

� Rρ(z) � Lcl
ρ,d |Ω|zρ+ d

2 , (2.11)

where

Lcl
ρ,d := 	(ρ + 1)

(4π)
d
2 	(ρ + 1 + d

2 )
. (2.12)

Remark 2.4. The upper bound on Rρ(z) is not new, but is a result of Laptev and Weidl [26,28],
for which we provide an independent method of proof for ρ � 2. They regard it as a version
of the Berezin–Li–Yau inequality, to which it is directly related by a Legendre transform when
ρ = 1. See also [20] for a discussion of the various connections.

Proof. Since Rρ(z) � (z0 − λ1)
ρ
+, for any z0 > λ1, it follows from Theorem 2.1 that for all

z � z0,

Rρ(z) � (z0 − λ1)
ρ
+
(

z

z0

)ρ+ d
2

.

By a straightforward calculation, the coefficient of zρ+d/2 is maximized when z0 = (1 + 2ρ
d

)λ1,
and the lower bound that results is the left-hand side of (2.11).

As for the other inequality, note, following [26,28], that the Weyl law implies that

Rρ(z)

zρ+ d
2

→ Lcl
ρ,d |Ω|

as z → ∞. Since Rρ(z)

zρ+d/2 is a nondecreasing function, it is less than this limit for all finite z. �
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Remark 2.5. It is also possible to prove the upper bound in (2.11) by invoking the difference
inequality (2.4) directly. Note that (2.4) can be rewritten in the form

Rρ−1(z)

Lcl
ρ−1,dzρ−1+ d

2

� Rρ(z)

Lcl
ρ,dzρ+ d

2

, (2.13)

by virtue of the fact that

Lcl
ρ−1,d =

(
1 + d

2ρ

)
Lcl

ρ,d .

Inequality (2.13) is a version of a monotonicity principle of Aizenman and Lieb [2] at the level
of the ratios rather than their suprema. The proof is then complete owing to the monotonicity
principle for Rρ(z)/zρ+d/2 and the Weyl asymptotic law as applied to Rρ−1(z)/z

ρ−1+d/2, i.e.,
for z � z0 > 0

Rρ−1(z)

Lcl
ρ−1,dzρ−1+ d

2

� Rρ(z)

Lcl
ρ,dzρ+ d

2

� Rρ(z0)

Lcl
ρ,dz

ρ+ d
2

0

.

Sending z → ∞ results in the Berezin–Li–Yau inequality for ρ � 2 once more.

Actually, the monotonicity principle described in Theorem 2.1 implies that for sufficiently

large z0, the lower bound on Rρ(z)/zρ+ d
2 is arbitrarily close to the upper bound. That is, given

any domain Ω and any ε > 0, there exists a large but finite zε such that for z � zε ,

Rρ �
(
Lcl

ρ,d − ε
)|Ω|zρ+ d

2 .

In this estimate, however, zε is not independent of the shape of Ω .
Arguments nearly identical to those adduced for Corollary 2.3 lead to lower bounds on Rρ

when ρ < 2, but they are not of Weyl-type due to the different exponent of z in Theorem 2.1. To
remedy this deficiency, we call on (2.2) and (2.4):

Corollary 2.6. For 1 � ρ < 2 and z � (1 + 2ρ+2
d

)λ1,

Rρ(z) � (2ρ + 2)ρd
d
2

(d + 2ρ + 2)ρ+ d
2

λ
− d

2
1 zρ+ d

2 , (2.14)

and for 0 � ρ < 1, z � (1 + 2ρ+4
d

)λ1,

Rρ(z) �
(1 + d

4 )(2ρ + 4)ρ+1d
d
2

(d + 2ρ + 4)ρ+1+ d
2

λ
− d

2
1 zρ+ d

2 . (2.15)
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For convenience we collect the most important cases ρ = 0,1, which, by Theorem 2.1, sim-
plify to

R1(z) �
(

1 + d

4

)
1

z
R2(z) � 4 d

d
2

(d + 4)1+ d
2

λ
− d

2
1 z1+ d

2 , (2.16)

and,

N (z) = R0(z) �
(

1 + d

4

)2 1

z2
R2(z) �

(
z

(1 + 4
d
)λ1

)d/2

. (2.17)

Remark 2.7. The Cheng–Yang bound (1.7) is a simple corollary of (2.17); for the proof let z

approach λk+1 and collect terms. These inequalities and the Cheng–Yang bound will be improved
and generalized below. Furthermore, the lower bounds provided by (2.11) and (2.14) compete
with the bound

Rρ(z) � H−1
d λ

−d/2
1

	(1 + ρ)	(1 + d/2)

	(1 + ρ + d/2)
(z − λ1)

ρ+d/2
+ , (2.18)

valid for ρ � 1, where Hd is defined by (1.6) above. The case ρ = 1 of (2.18) can be found
in [22] and is in fact hidden in earlier work of Laptev [26]. It is the Legendre transform of this
inequality that provides the bound (1.5) which competes with Cheng and Yang’s (1.7). Additional
discussion and comparisons appear in Section 4 (see also [20]).

One option for generalizing inequalities (2.17) and (1.7) is to compare with parts of the spec-
trum lying above λ1. To avoid complications, we shall focus on inequalities involving R2(z). Just
as λj denotes the mean of the eigenvalues λ� for � � j , define

λ2
j := 1

j

∑
��j

λ2
�.

For a given z, we let ind(z) be the greatest integer i such that λi � z; we then find that

R2(z) = ind(z)
(
z2 − 2zλind(z) + λ2

ind(z)

)
. (2.19)

For any integer j and all z � λj , ind(z) � j , and therefore

R2(z) � Q(z, j) := j
(
z2 − 2zλj + λ2

j

)
.

Using Theorem 2.1, for z � zj � λj ,

R2(z) � Q(zj , j)

(
z

zj

)2+ d
2

. (2.20)

A good—simple but not optimized—choice is zj = (1 + 4
d
)λj . Observe that because of the

Cauchy–Schwarz inequality, λj
2 � λ2, so
j
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Q(z, j) = j
(
(z − λj )

2 + λ2
j − λj

2)
� j (z − λj )

2. (2.21)

This establishes the following.

Corollary 2.8. Suppose that z � (1 + 4
d
)λj . Then

R2(z) � jz2+ d
2

(1 + d
4 )2((1 + 4

d
)λj )

d
2

, (2.22)

and therefore,

R1(z) � jz1+ d
2

(1 + d
4 )((1 + 4

d
)λj )

d
2

(2.23)

and

N (z) � j

(
z

(1 + 4
d
)λj

)d/2

. (2.24)

Moreover, for all k � j � 1,

λk+1/λj �
(

1 + 4

d

)(
k

j

)2/d

. (2.25)

Proof. The first statement comes from substituting z = zj = (1 + 4
d
)λj into Eqs. (2.20)

and (2.21) and simplifying. The next two statements result from substituting the first statement
into (2.16) and (2.17).

The final statement (2.25) is automatic if λk+1 � (1 + 4
d
)λj . Suppose to the contrary that

λk+1 > (1 + 4
d
)λj . As z increases to λk+1, (2.24) becomes valid and in the limit reads

k � j

(
λk+1

(1 + 4
d
)λj

)d/2

,

which when solved for λk+1/λj yields the claim. �
The case j = k reproduces a straightforward and well-known simplification of Yang’s in-

equality [37], viz.,

λk+1 �
(

1 + 4

d

)
λk. (2.26)

The case j = 1 reduces to the Cheng–Yang bound (1.7). The other cases are new.
We turn now to the relation of Riesz means having values of ρ not necessarily differing by

integers as in Theorem 2.1. Because the upper and lower bounds in (2.11) obey the same power
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law, all Riesz means for ρ � 2 are comparable in the sense that for any pair ρ1,2 � 2, and all z

larger than a certain value,

c� � Rρ1(z)z
−ρ1

Rρ2(z)z
−ρ2

� cu,

for explicit non-zero quantities c�,u depending only on ρ1,2, the dimension d , and the dimen-
sionless quantity |Ω|λd/2

1 . Moreover, the subsequent corollary, together with the Laptev–Weidl
version of Berezin–Li–Yau [28] allows the same claim to be made for ρ1,2 � 1, with the upper
bound holding even for ρ2 � 0.

Other constraints on ratios of Riesz means derive from Hölder’s inequality, by which Rρ(z) is
a log-convex function of ρ. That is, for ρ0 � ρ1 � ρ2, if t is chosen so that ρ1 = tρ0 + (1 − t)ρ2,
Hölder’s inequality applied to the definition (2.1) directly produces:

Rρ1(z) � Rρ0(z)
tRρ2(z)

1−t . (2.27)

Choosing ρ0 = 0, ρ1 = ρ − 1, ρ2 = ρ, and t = 1
ρ

, we get

Rρ−1(z) �
(
Rρ(z)

) ρ−1
ρ

(
R0(z)

) 1
ρ ,

or, equivalently,

N (z) � (Rρ−1(z))
ρ

(Rρ(z))ρ−1
. (2.28)

Along with (2.4), we obtain, for all z and ρ � 2,

N (z) �
(

d + 2ρ

2ρ

)ρ

z−ρRρ(z). (2.29)

From this stage lower bounds on N , and consequently upper bounds on λk+1, can be derived for
all ρ � 2, by optimizing coefficients as before to eliminate Rρ . The latter, however, are not found
to improve upon the case ρ = 2, which corresponds to (2.17) and (2.24).

3. Weyl-type estimates of means of eigenvalues

The Legendre transform is an effective tool for converting bounds on Rρ(z) into bounds on
the spectrum, as has been realized previously, e.g., in [29]. We use it in this section to obtain
some improvements on parts of the preceding section, with a focus on the averages λk .

Recall that if f (z) is a convex function on R
+ that is superlinear in z as z → +∞, its Legendre

transform

L[f ](w) := sup
z

{
wz − f (z)

}
(3.1)

is likewise a superlinear convex function. Moreover, for each w, the supremum in this formula is
attained at some finite value of z. (A concise treatment of the Legendre transform may be found
for example in [17, Chapter 3]. The Legendre transform on R

+ can be understood in terms of the
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more widely treated Legendre transform on R by restricting to even functions.) We also note that
f (z) � g(z) for all z ⇒ L[f ](w) � L[g](w) for all w, and proceed to calculate the Legendre
transform of (2.23).

First we make a remark about the restriction on the range of values of z for which inequal-
ity (2.23) is valid, viz., z � zj := (1 + 4

d
)λj . We can imagine redefining the function on the right

for z � zj in some unimportant way, though preserving convexity, so that it provides a lower
bound to the left-hand side for all z � 0. While this extended definition contains no information,
it ensures that both sides of inequality (2.16) are now defined on a standard interval guaranteeing
that the Legendre transform has the properties cited above. Since the maximizing value of z in
the definition (3.1) is a nondecreasing function of w, it follows that for w sufficiently large, the
maximizing z exceeds zj . This permits us simply to transform both sides of inequality (2.16) to
obtain a dual inequality that is valid when w � wj , for some wj , the value of which we shall
estimate post facto.

The Legendre transforms of the two sides of inequality (2.23) are straightforward: the maxi-
mizing value of z in the Legendre transform of R1 is attained at one of the critical values, which,
because R1 is piecewise linear, means that zcr = λk+1, and it is easy to check that k = [w].
Substitution reveals

L[R1](w) = (
w − [w])λ[w]+1 + [w]λ[w].

Together with the standard Legendre transform of the right-hand side of (2.23), we obtain

(
w − [w])λ[w]+1 + [w]λ[w] � 2

j
2
d

(
1 + d

4

1 + d
2

)1+ 2
d

λj w1+ 2
d (3.2)

for certain values of w and j , the determination of which we now consider. In Corollary 2.8 it is
supposed that z � (1 + 4

d
)λj , and we recall that there is a monotonic relationship between w and

the maximizing z∗ in the calculation of the Legendre transform of the right-hand side of (2.23).
(By the maximizing z∗ for a Legendre transform we mean the value such that L[f ](w) = wz∗ −
f (z∗).) By an elementary calculation,

w = j

(
1 + d

2

1 + d
4

)(
z∗

(1 + 4
d
)λj

) d
2

, (3.3)

so it follows that if w is restricted to values � j
1+ d

2

1+ d
4

, then inequality (3.2) is valid. Meanwhile,

for any w we can always find an integer k such that on the left-hand side of (3.2), k − 1 � w < k.

If k > j
1+ d

2

1+ d
4

and if we let w approach k from below, we obtain from (3.2)

λk + (k − 1)λk−1 � 2

j
2
d

(
1 + d

4

1 + d
2

)1+ 2
d

λj k
1+ 2

d .

The left-hand side of this equation is the sum of the eigenvalues λ1 through λk , and the calcula-
tion can thus be encapsulated as
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Corollary 3.1. For k � j
1+ d

2

1+ d
4

, the means of the eigenvalues of the Dirichlet Laplacian satisfy a

universal Weyl-type bound,

λk/λj � 2

(
1 + d

4

1 + d
2

)1+ 2
d
(

k

j

) 2
d

. (3.4)

Note that for small values of j the restriction on k is fulfilled simply for k > j . We are
aware of only one previous bound somewhat comparable to Corollary 3.1, namely in the case
k = d + 1, j = 1, for which Ashbaugh and Benguria [5] have shown that

λd+1/λ1 � d + 5

d + 1
.

This is stronger than (3.4) when k = d + 1, j = 1. Hence we can set j = d + 1 and multiply the
two bounds, to obtain:

Corollary 3.2. For k � (d+1)(1+ d
2 )

1+ d
4

,

λk/λ1 � d + 5

2
2
d

(
(d + 4)

(d + 1)(d + 2)

)1+ 2
d

k
2
d . (3.5)

We remark that together with (2.25), setting j = k, this implies

λk+1/λ1 � (d + 4)2+ 2
d (d + 5)

2
2
d d(d + 1)1+ 2

d (d + 2)1+ 2
d

k
2
d . (3.6)

Finally, we note that any bound in terms of λk , whether from above or below, implies a bound,

with λk replaced by the square root of λ2
k with an additional factor depending only on dimension,

since

λk
2 � λ2

k �
(1 + 2

d
)2

1 + 4
d

λk
2. (3.7)

The first of these inequalities is Cauchy–Schwarz, and the second is from [21], Proposi-
tion 6(ii) (set the parameter ρ occurring there to 1). The bounds implied by the considerations
above and (3.7) for the root-mean-square of the eigenvalues are of Weyl-type. Moreover, similar
statements can be made about other eigenvalue moments

Mρ := Mρ(λ1, λ2, . . . , λk) :=
(

1

k

∑
λ

ρ
�

) 1
ρ

��k
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when 0 < ρ � 2, as well as for the geometric and harmonic means of the eigenvalues. In analogy
to the situation of the Riesz means, this is a consequence of Hölder’s inequality (see also [19]),
which implies

Mρ < Mμ for ρ < μ,

and the interpolation formula

Mρ
ρ <

(
Mμ

μ

) τ−ρ
τ−μ

(
Mτ

τ

) ρ−μ
τ−μ for μ < ρ < τ.

For 0 < ρ < 1, we specialize to the case

Mρ < M1 = λk.

For 1 < ρ < 2, inequality (3.7) can be combined with the interpolation formula for μ = 1, τ = 2.

(Note that M2 =
√

λ2
k .) The claims for geometric and harmonic means are then clear by virtue

of the classical inequalities relating these means to the arithmetic mean.

4. Comparison of universal bounds

In this section we compare our universal eigenvalue bounds with those that have appeared
earlier. We consider bounds for λk as well as for λk+1. Setting j = 1 in (3.4), for k � 2, we
obtain

λk

λ1
� 2

(
1 + d

4

1 + d
2

)1+ 2
d

k
2
d . (4.1)

We claim that (4.1) is sharper than (1.7). To see this, set j = 0,1, . . . , k − 1 in (1.7) and sum,
to get

k−1∑
j=0

λj+1

λ1
�

(
1 + 4

d

) k−1∑
j=0

j
2
d �

(
1 + 4

d

)
k1+ 2

d

1 + 2
d

,

where we have simplified the expression by regarding the middle sum as a left Riemann sum,
following [22]. After simplification, the Cheng–Yang bound (1.7) implies

λk

λ1
� d + 4

d + 2
k

2
d . (4.2)

The coefficients of (4.2) and (4.1) are plotted against the dimension in Fig. 1. Clearly,

1 < 2

(
1 + d

4

1 + d
2

)1+ 2
d

<
d + 4

d + 2
.

The averaged bounds are also plotted in Fig. 2 against k (for d = 4) along with the bound of
Hermi (1.5) and with (4.2) and (4.1), and are seen to improve the earlier results. The averaged
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Fig. 1. (4.1) vs (4.2) as a function of d .

Fig. 2. Bound for λk/λ1 as a function of k (d = 4).

versions of the Ashbaugh–Benguria bound (1.3) and that of the Weyl expression in (1.10) are also
illustrated along with (4.2) and (4.1) in Fig. 2. They are obtained by dividing the expressions in
those equations by 1 + 2

d
(i.e., performing the integration in k). This comparison between the

various bounds is displayed numerically for λ127/λ1 for various dimensions in Table 1.
Notice again the competition between the various bounds with (4.1) always providing the best

constant. One can also combine (4.1) and (2.26). The bounds that ensue, however, were found
not to fare better than (1.7). Note that we improve by almost 25 percent going from (1.7) to (4.1)
when d = 2; see Table 2.

Similar comparisons can be made for λk with k � d + 1, setting (3.5) beside the bound (1.9)
found in [14]. Again, on average, (3.5) is an improvement. The comparison is displayed in Table 3
when k = [ (d+1)(1+d/2)

1+d/4 ]+1. The columns in Table 3 represent the ratios between the expressions
found in (3.5) and (1.9) and the averaged version of (1.10).

We conclude by noting, as discussed above, that for low-lying eigenvalues one cannot expect
to improve on the bound (1.3) of Ashbaugh–Benguria. This is illustrated in Fig. 3.
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Table 1

Bound for λ127
λ1

as a function of the dimension d

d (4.1) (4.2) (1.5) AB Weyl

2 142.875 190.5 163.962 339.852 43.9204
3 27.8886 35.3723 32.5332 89.974 8.9804
4 12.2686 15.0259 14.7695 40.2459 4.0937
5 7.48017 8.92619 9.34082 23.3009 2.56781
6 5.37202 6.28316 6.95603 15.646 1.88786
7 4.23768 4.87795 5.67474 11.5391 1.51906

Table 2
Comparison for coefficients (4.1) and (4.2) as a function of the
dimension d

d (4.1)/(Weyl) (4.2)/(Weyl)

2 3.250304 4.33739
3 3.10528 3.93884
4 2.99694 3.67049
5 2.91306 3.47619
6 2.84556 3.32818
7 2.78967 3.21116

Table 3
Bound for (3.5) and (1.9) as a function of the dimension d , for

k = [ (d+1)(1+d/2)
1+d/4 ] + 1

d (3.5)/(Weyl) (1.9)/(Weyl)

2 2.53014 3.08587
3 2.46466 2.92435
4 2.41249 2.80499
5 2.37103 2.71385
6 2.33756 2.64210
7 2.31003 2.58414

Fig. 3. (1.3) vs (1.7) as a function of k (d = 3).
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