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In this article we prove the equivalence of certain inequalities for Riesz means
of eigenvalues of the Dirichlet Laplacian with a classical inequality of Kac.
Connections are made via integral transforms including those of Laplace, Legendre,
Weyl, and Mellin, and the Riemann–Liouville fractional transform. We also prove
new universal eigenvalue inequalities and monotonicity principles for Dirichlet
Laplacians as well as certain Schrödinger operators. At the heart of these
inequalities are calculations of commutators of operators, sum rules, and monotonic
properties of Riesz means. In the course of developing these inequalities we prove
new bounds for the partition function and the spectral zeta function (cf. Corollaries
3.5–3.7) and conjecture about additional bounds.

Keywords Berezin–Li–Yau inequalities; Eigenvalues; Laplacian; Universal
bounds.

Mathematics Subject Classification 35J10; 58J05.

1. Riesz Means, Counting Functions, and All That

Commutator identities introduced in [26] were used to derive universal inequalities
for eigenvalues of the Dirichlet Laplacian and Schrödinger operators with discrete
spectra. (See related work in [6, 7, 18, 24].) In [25] these ideas were connected
with difference and differential inequalities and used to obtain semiclassically sharp
spectral bounds. In the present article we put those notions together with some
transform techniques in order to connect together inequalities for spectra, which
have been derived by independent methods in the past. The essential point is that
these inequalities are equivalent under the application of integral transforms. Along
the way we obtain some improvements and conjecture about yet more inequalities.

For the most part we shall concentrate on the Dirichlet Laplacian, i.e., on the
fixed membrane problem on a bounded domain � ⊂ �d,

�u+ � u = 0 in �� (1.1)
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1522 Harrell and Hermi

subject to a Dirichlet boundary condition u��� = 0. The boundedness of � serves
only to guarantee that the spectrum is purely discrete [14, 15]. With suitable
systematic changes it is sometimes possible to treat the Schrödinger operator,

−�u+ V�x�u = � u in �� (1.2)

under circumstances where its spectrum is discrete and bounded from below.
Necessary and sufficient conditions for this are discussed in a recent article by
Simon [52].

Eigenvalues are counted with multiplicities and increasingly ordered:

�1 < �2 ≤ · · · ≤ �k ≤ · · · → �� (1.3)

The eigenvectors, known to form a complete orthonormal family of L2���, are
denoted by u1� u2� � � � � uk� � � �

A central object is the Riesz mean of order 	 > 0. It is defined, for z ≥ 0, by

R	�z� =
∑
k

�z− �k�
	
+�

where �z− ��+ 
= max�0� z− �� is the ramp function.
To avoid confusion, whenever dealing with the eigenvalues of the Schrödinger

operator, the eigenvalues will be listed as �1�V� ≤ �2�V� ≤ � � � , while the Riesz mean
will be denoted by R	�z� V�.

When 	 → 0+, the Riesz mean reduces to the counting function

N�z� = ∑
�k≤z

1 = sup
�k≤z

k�

Basic facts about Riesz means can be found in [11] and in some works related
to the Lieb–Thirring inequality (e.g., [28, 29, 32, 33]). A key property we will use
in this work, sometimes referred to as Riesz iteration or as the Aizenman–Lieb
procedure [2], is that for 	� � > 0,

R	+���� =
��	+ �+ 1�
��	+ 1�����

∫ �

0
��− t��−1

+ R	�t�dt� (1.4)

We observe that Riesz iteration is nothing but a Riemann–Liouville fractional
integral transform, the properties of which are tabulated in [19] and that (1.4) can
be proved with a straightforward application of the Fubini–Tonelli theorem to an
identity for the Euler Gamma and Beta functions [11, 33].

Estimates for these functions of the spectrum have been of interest for almost
a century, since the asymptotic formula of Weyl [5, 8, 33, 35, 36, 47, 55] for the
eigenvalues of the Laplacian,

N�z� ∼ Cd����d/2
�2
�d

= Lcl
0�d ���zd/2 (1.5)

as z → �. Here

Lcl
0�d 
= Cd/�2
�

d (1.6)
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Riesz Means of Eigenvalues 1523

is called the classical constant and Cd is the volume of the d-ball,

Cd = 
d/2/��1+ d/2��

Note that the Riesz iteration of (1.5) immediately gives the statement that

R	�z� ∼ Lcl
	�d���z	+d/2 as z → �� (1.7)

where the classical constant is given by

Lcl
	�d = ��1+ 	�

�4
�d/2��1+ 	+ d/2�
� (1.8)

Furthermore, for 	 ≥ 1, Berezin [9] proved that

R	�z� ≤ Lcl
	�d���z	+d/2� (1.9)

Remark. In [42] (see also [39, 41]) Laptev and Weidl refer to this as the Berezin–Li–
Yau inequality. Indeed, in 1972 Berezin [9] proved a general version of (1.9) from
which a 1983 inequality of Li and Yau [44] follows as a corollary (see also [54]). In
terms of the counting function, the Berezin–Li–Yau inequality,

k∑
j=1

�j ≥
d

d + 2
4
2k1+2/d

�Cd����2/d � (1.10)

reads

N�z� ≤
(
d + 2
d

)d/2

Lcl
0�d ���zd/2� (1.11)

Berezin’s version [39, 51] reads

∫ z

0
N���d� ≤ 1

1+ d
2

Lcl
0�dz

1+d/2���� (1.12)

This is just the statement (1.9) for 	 = 1, recalling that the left side is R1�z) and that
by (1.8),

Lcl
1�d = 1

1+ d
2

Lcl
0�d� (1.13)

Since N�z� is a nondecreasing function, for � > 0,

N�z� ≤ 1
�z

∫ �1+��z

z
N���d� ≤ 1

�z

∫ �1+��z

0
N���d� ≤ �1+ ��1+d/2

�1+ d
2 ��

Lcl
0�d���zd/2�

The Berezin–Li–Yau bound (1.11) follows by setting � = 2/d. In a rather
straightforward way, the method of [39] and [51] for proving (1.11) yields a formula
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1524 Harrell and Hermi

that interpolates between (1.11) (	 = 0) and (1.9). Indeed, for 0 ≤ 	 ≤ 1, it follows
immediately that

R	�z� ≤ K	�dL
cl
	�d��� z	+ d

2 � (1.14)

where

K	�d = 1
�1− 	�1−	

�1+ d/2�1+d/2

�	+ d/2�	+d/2
��1+ 	� ��2− 	�

Lcl
1�d

Lcl
	�d

�

We also note that this inequality (1.14) has been superseded by the recent result
of Frank et al. [22] who, interpolating at the level of the integrands, proved that

R	�z� ≤ �	�d L
cl
	�d��� z	+ d

2 � (1.15)

also for 0 ≤ 	 ≤ 1, where

�	� d = C�	� 1�
C�1− 	� 1+ d/2�

Lcl
1�d

Lcl
	�d

and

C�	� d� = d−d		�d − 	�d−	�

Figure 1 depicts the constants in (1.11), (1.14), and (1.15) for d = 3 and 0 ≤
	≤ 1. By developing ideas from [7, 26] it was proved in [25] that for 	 ≥ 2,

∑
k

�z− �k�
	
+ ≤ 2	

d

∑
k

�k �z− �k�
	−1
+ � (1.16)

Figure 1. Comparison of the constant in (1.14), (1.15), and the Riesz iteration of (1.11)
with the classical constant Lcl

	�d for 0 ≤ 	 ≤ 1 and d = 3. (Color figure available online.)
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Riesz Means of Eigenvalues 1525

thereby extending the “Yang-type inequality” [4, 56] (see also [6, 26, 43] and the
appendix to [12]), viz.,

∑
k

�z− �k�
2
+ ≤ 4

d

∑
k

�k�z− �k�+� (1.17)

corresponding to 	 = 2. In Section 2.3 we shall show how the inequalities for 	 > 2
can be directly deduced from (1.17).

Another familiar function of the spectrum is the partition function (= trace of
the heat kernel) Z�t�. We recall the asymptotic formula of Kac [36] for Z�t�:

Z�t� 
=
�∑
k=1

e−�kt ∼ ���
�4
t�d/2

� (1.18)

and observe that it can be proved with an application of the Laplace transform
��f��t� 
= ∫ �

0 f�z�e−ztdz to (1.5). In [35] Kac also used “the principle of not feeling
the boundary” to derive the inequality

Z�t� =
�∑
k=1

e−�kt ≤ ���
�4
t�d/2

� (1.19)

In [26] this was improved to the statement that td/2Z�t� is a nonincreasing function
that saturates when t → 0+.

The article is organized as follows. We first prove the equivalence of several
old and new inequalities for the spectrum of the Dirichlet Laplacian. Central to
our argument is a monotonicity principle proved in [25], to which we offer a new
path via integral transforms. We then use a sum rule in the style of Bethe [10, 34]
to recover bounds which compete with the Berezin–Li–Yau inequality (1.9), and
also with results recently proved in [25]. While (3.1) is immediate in light of earlier
work (see [21, 30]), (3.17), (3.18), (3.21), (4.2), (4.3), and (4.4) are to our knowledge
new. These inequalities fit the general set-up leading to (3.21) and (4.5) to which
we describe a natural path as well via integral transforms alternative to [16] (see
also [17]). The role of integral transforms is a central point of this article. We also
comment on some possible corrections to the Berezin-Li-Yau inequality and related
inequalities.

2. The Equivalence of Several Inequalities for Spectra

In this section we show that many universal and geometric bounds for spectra of
the Dirichlet Laplacian, which have been proved in the literature by independent
methods, may in fact be derived from one another by the application of the
Laplace transform and some classical inequalities. In particular, for 	 ≥ 2, it will be
shown that the Kac inequality (1.19) and the Berezin–Li–Yau inequality (1.9) are
equivalent by the Laplace transform. These inequalities are seen to be corollaries of
the Riesz-mean inequalities of [25, 26], which in turn can all be derived from the
case 	 = 2, originating with Yang.
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1526 Harrell and Hermi

Some of the equivalences shown in this section are summarized in the following
diagram:

Yang ⇔ Harrell-Stubbe� 	 ≥ 2
⇓ ⇓

Kac ⇔ Berezin-Li-Yau� 	 ≥ 2�

2.1. Kac from Berezin-Li-Yau

For the pure Laplacian, with no added potential, we start by showing that the Kac
inequality (1.19) can be derived from the Berezin–Li–Yau inequality (1.9). Begin
with the observation that the Laplace transform yields

���z− �k�
	
+� = ��	+ 1�e−�k t

t	+1
� (2.1)

Applying this to (1.9) immediately leads to

��	+ 1�
t	+1

Z�t� ≤ Lcl
	�d �����	+ 1+ d

2 �

t	+1+ d
2

�

which upon simplification reads

Z�t� ≤ ���
t
d
2

Lcl
	�d ��	+ 1+ d

2 �

��	+ 1�
�

Using the definition of Lcl
	�d in (1.8) results in (1.19). Indeed it is only necessary

to have (1.9) for a single value of 	.
We observe that the same argument relates the Kac-Ray inequality [35, 36, 48,

53],

Z�t� ≤ 1
�4
t�d/2

∫
�d

e−tV�x�dx (2.2)

(also known in the literature as the Golden-Thompson inequality [16]) to the Lieb-
Thirring inequality [40, 41]

R	�z� ≤ Lcl
	�d

∫
�d
�z− V�x��

	+d/2
+ dx� (2.3)

for the Laplace transform of (2.3) yields (2.2). This works for any 	 for which the
sharp form (2.3) has been established.

2.2. Kac from Yang

Next we show how to obtain Kac’s inequality (1.19) directly from Yang’s inequality
(1.17) and the asymptotic formula (1.18). The link is a result of Harrell and
Stubbe [26]:

Theorem 2.1. The function td/2 Z�t� is a nonincreasing function.
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Riesz Means of Eigenvalues 1527

Together with (1.18) in the form

lim
t→0+

td/2Z�t� = ���
�4
�d/2

� (2.4)

this immediately implies and slightly improves Kac’s inequality. Here we observe
that Yang’s inequality (1.17) provides an alternative proof of Theorem 2.1: apply
the Laplace transform to both sides of (1.17), written now in the form

�∑
k=1

�z− �k�
2
+ ≤ 4

d

�∑
k=1

�k �z− �k�+�

and use (2.1) to obtain the differential inequality

Z�t� ≤ − 2
d
t Z′�t�� (2.5)

or, after combining,

�td/2 Z�t��
′ ≤ 0�

2.3. Riesz-Mean Inequalities for � > 2 from Yang

In this section we show how to prove (1.16) directly from (1.17).

Theorem 2.2 ([26]). For 	 ≥ 2 and z ≥ 0,

R	�z� ≤
	

	+ d
2

zR	−1�z�� (2.6)

Noting that (2.6) is equivalent to (1.16), we now provide an alternative proof
of (2.6) beginning with (1.17).

Proof. In order to use Riesz iteration we now rewrite (1.17) for t ≤ z as

∑
k

�z− �k − t�2+ ≤ 4
d

∑
k

�k�z− �k − t�+�

Multiply both sides by t	−3, and then integrate between 0 and �. There results

∑
k

�z− �k�
	
+ ≤ 4

d

��	+ 1���2�
��	���3�

∑
k

�k�z− �k�
	−1
+ �

With ��	+ 1� = 	 ��	�, this simplifies to

∑
k

�z− �k�
	
+ ≤ 2	

d

∑
k

�k�z− �k�
	−1
+ � (2.7)

which is the statement of Theorem 2.2. �
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1528 Harrell and Hermi

It was shown in [25] that (2.7) is equivalent to the differential inequality

R	�z� ≤
1

	+ d
2

zR′
	�z�� (2.8)

and hence to a monotonicity principle, viz.,

Theorem 2.3 ([25]). The function

z �→ R	�z�

z	+
d
2

is a nondecreasing function of z, for 	 ≥ 2.

Remark. In [7], it was proved that if �m�	� is the unique solution of

∑
k

�z− �k�
	
+ = 2	

d

∑
k

�k�z− �k�
	−1
+

for z ≥ �m, then �m+1 ≤ �m�	�. Moreover �m+1 ≤ �m�	� ≤ �m�	
′� for 2 ≤ 	 ≤ 	′.

Given that the cases 	 > 2 of (2.6) follow from the case 	 = 2, it might be thought
that it is not sharp for large 	. To the contrary, it was shown in [25] that (2.6) implies
strict bounds with the correct power corresponding to Weyl’s law. Indeed:

Theorem 2.4. The constant in inequality (2.6) for 	 ≥ 2 cannot be improved.

Proof. The proof proceeds by contradiction. Suppose there exists a constant
C�	� d� < 	

	+ d
2
such that

R	�z� ≤ C�	� d�zR	−1�z�� (2.9)

Dividing both sides by z	+
d
2 ���, then sending z → �, leads to

Lcl
	�d ≤ C�	� d�Lcl

	−1�d�

However,

Lcl
	�d = 	

	+ d
2

Lcl
	−1�d�

and therefore C�	� d� ≥ 	

	+ d
2
. This contradicts the assumption and proves the

claim. �

2.4. Berezin–Li–Yau from Harrell–Stubbe

At this stage we make the simple observation that for 	 ≥ 2, the Berezin–Li–Yau
inequality (1.9) follows immediately from inequality (1.16) (or (2.6)) by virtue of the
monotonicity principle of Theorem 2.3 and the asymptotic formula (1.7).
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Riesz Means of Eigenvalues 1529

2.5. Riesz-Mean Inequalities for � < 2 from Yang

In [25] the difference inequality

∑
k

�z− �k�
	
+ ≤ 4

d

∑
k

�k �z− �k�
	−1
+ (2.10)

for 1 < 	 ≤ 2 was obtained from first principles and used to prove Weyl-type
universal bounds for ratios of averages of eigenvalues. Eq. (2.10) implies a
differential inequality and monotonicity principle similar to Theorem 2.3, but as an
alternative we show how to obtain (2.10) using the “Weighted Reverse Chebyshev
Inequality” (see, for example, p. 43 of [7, 23]):

Lemma 2.5. Let �ai� and �bi� be two real sequences, one of which is nondecreasing
and the other nonincreasing, and let �wi� be a sequence of nonnegative weights. Then,

m∑
i=1

wi

m∑
i=1

wi aibi ≤
m∑
i=1

wi ai

m∑
i=1

wi bi� (2.11)

Making the choices wi = �z− �k�
	1+ , ai = �k

�z−�k�+
, and bi = �z− �k�

	2−	1+ with 	1 ≤
	2 ≤ 2, the conditions of the lemma are satisfied and we get

∑
k

�z− �k�
	1+
∑
k

�z− �k�
	2−1
+ �k ≤

∑
k

�z− �k�
	2+
∑
k

�z− �k�
	1−1
+ �k�

which is equivalent to

∑
k�z− �k�

	1+∑
k�z− �k�

	1−1
+ �k

≤
∑

k�z− �k�
	2+∑

k�z− �k�
	2−1
+ �k

� (2.12)

To obtain inequality (2.10), now set 	1 = 	 and 	2 = 2 in the above and use
inequality (1.17) to estimate the right side. We observe that inequality (2.10) not
only implies familiar results for 	 = 1 and 	 = 0 (the Hile–Protter inequality [31]),
but also hitherto unexplored inequalities for 	 < 0.

2.6. Berezin–Li–Yau from Kac, for � ≥ 2

We showed above how to obtain Kac’s inequality (1.19) from (1.9). In this
section, we show the reverse, and thus the full equivalence of the two statements.
Throughout this section we assume 	 ≥ 2.

As a result of the Monotonicity Theorem 2.3, for z ≥ z0,

R	�z� ≥ R	�z0�

(
z

z0

)	+d/2

� (2.13)

With � = −z0 + z > 0,

R	�� + z0� ≥ R	�z0�

(
� + z0
z0

)	+d/2

� (2.14)
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1530 Harrell and Hermi

The Laplace transform of a shifted function is given by the formula (see p. 3 of [50])

��f�� + z0�� = ez0 t
(
��f�−

∫ z0

0
e−t�f���d�

)
�

We apply the Laplace transform to (2.14), noting that for the left side,

���� + z0 − �k�
	
+� = e�z0−�k�+t

(
��	+ 1�
t	+1

−
∫ �z0−�k�+

0
e−t��	d�

)
� (2.15)

whereas for the right,

���� + z0�
	+d/2� = ez0 t

(
��	+ 1+ d/2�

t	+1+d/2
−

∫ z0

0
e−t��	+d/2d�

)
� (2.16)

We note the appearance of the incomplete Gamma function (see [1, p. 260])

��a� x� =
∫ x

0
e−��a−1d��

Putting these facts together, we are led to

∑
k

e�z0−�k�+t
{
��	+ 1�
t	+1

− ��	+ 1� �z0 − �k�+t�
t	+1

}

≥ R	�z0�

z
	+d/2
0

ez0
{
��	+ 1+ d/2�

t	+1+d/2
− ��	+ 1+ d/2� z0 t�

t	+1+d/2

}
�

We now notice that

∑
k

e�z0−�k�+t ≤ ez0 t
�∑
k=1

e−�kt = ez0 t Z�t�� (2.17)

Therefore, after a little simplification,

��	+ 1�
��	+ 1+ d/2�

td/2Z�t� ≥ R	�z0�

z
	+d/2
0

+��t�� (2.18)

where the remainder term ��t� has the explicit form

��t� = td/2

��	+ 1+ d/2�
e−z0t

∑
k

e�z0−�k�+t ��	+ 1� �z0 − �k�+t�

− td/2

��	+ 1+ d/2�

R	�z0�

z
	+d/2
0

��	+ 1+ d/2� z0 t��

Notice that limt→0 ��t� = 0. Sending t → 0 in (2.18) and again incorporating (2.4)
leads to

��	+ 1�
�4
�d/2 ��	+ 1+ d/2�

��� ≥ R	�z0�

z
	+d/2
0

� (2.19)
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Riesz Means of Eigenvalues 1531

We finish by observing that the constant on the left side of (2.19) is the classical
constant Lcl

	�d from (1.8). Hence Berezin–Li–Yau follows for 	 ≥ 2, as claimed.
In summary, when 	 ≥ 2 the Berezin–Li–Yau inequality is equivalent to the Kac
inequality.

2.7. Extension to Schrödinger Spectra

We remark in this section on some extensions to the case of Schrödinger operators.
If the potential function V�x� �= 0, then according to [26, Eq. (12)], (1.17) can be
written as

∑
k

�z− �k�V��
2
+ ≤ 4

d

∑
k

Tk �z− �k�V��+� (2.20)

where

Tk 
=
∫
�
��uk�2 = �k�V�−

∫
�
V�x��uk�2 
= �k�V�− Vk� (2.21)

As was remarked in [26], Tk is often bounded above by a multiple of
�k�V� under general assumptions on V , for example those that guarantee a virial
inequality. Another circumstance in which such a bound is possible is when the
negative part of V is relatively bounded by the Laplacian [15, 37, 49], whether
in the sense of operators or of quadratic forms. As an example, according to
the Gagliardo–Nirenberg inequality (e.g., [3]), there is a dimension-dependent
constant KGN�d, d≥ 3, such that if V− 
= max�0�−V�x�� ∈ Ld/2, then

∫
�
V−�x��uk�2 ≤

KGN�d �V−�d/2 Tk� Under these circumstances,

Tk ≤ �k�V�+
∫
�
V−�x��uk�2 ≤ �k�V�+ KGN�d�V−�d/2 Tk�

If, moreover, �V−�d/2 < 1/KGN�d, then it follows that

Tk <
1

1− KGN�d�V−�d/2
�k�V��

In [3], the constant KGN�d is given in the explicit form

KGN�d = �d − 1�2

�d − 2�2 d
�

thus restricting the dimension to d ≥ 3.
Because there are many such circumstances, we simply state here:

Assumption �. There exists � < � such that Tk ≤ � �k�V� for all k.
The bounds shown above can be systematically reproved for Schrödinger

operators under this assumption with minor changes. We collect here without proof
some of the results:

Theorem 2.6. Assume that H = −�+ V�x� is essentially self-adjoint on Cc���; has
purely discrete spectrum with �1�V� > −�; and satisfies Assumption �. Then
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1532 Harrell and Hermi

a) (Riesz means, 	 ≥ 2) For 	 ≥ 2 and z ≥ 0,

R	�z� V� ≤
	

	+ d
2�

zR	−1�z� V�� (2.22)

and consequently the function

z �→ R	�z� V�

z	+
d
2�

is a nondecreasing function of z.
b) (Riesz means, 	 ≤ 2) For 1 < 	 ≤ 2 and z ≥ 0,

R	�z� V� ≤
1

1+ d
4�

zR	−1�z� V�� (2.23)

and consequently the function

z �→ R	�z� V�

z	+
d	
4�

is a nondecreasing function of z.

3. Lower Bounds for Riesz Means, Zeta Functions, and Partition Functions

In this section, we obtain lower bounds on R	�z�, which for some parameter values
improve the lower bounds obtained in [25]. As corollaries we get lower bounds on
spectral zeta function

�spec�	� =
�∑
k=1

1
�
	
k

�

and on the partition function Z�t�.

Theorem 3.1. For 	 ≥ 1

R	�z� ≥ H−1
d

��1+ 	���1+ d/2�
��1+ 	+ d/2�

�
−d/2
1 �z− �1�

	+d/2
+ � (3.1)

Here

Hd = 2 d

j2d/2−1�1J
2
d/2�jd/2−1�1�

(3.2)

is a universal constant which depends on the dimension d, while Jn�x� and jn�p
denote, respectively, the Bessel function of order n, and the pth zero of this function
(see [1]). The case 	 = 1 of (3.1) has been proved in [30] using the Rayleigh–
Ritz method, and in [51] Safarov derived similar lower bounds, with a lower
constant (see also [38]). Yet another independent proof and generalization appeared
in [21], in the spirit of [39]. We shall obtain some improvement by use of Riesz
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Riesz Means of Eigenvalues 1533

iteration and Chiti’s isoperimetric lemma [13]. Note that Ineq. (3.1) is valid for both
the eigenvalues of the Dirichlet–Laplacian and the class of Schrödinger operators
treated in [21]. (See also the recent paper [20], where the generalization of this
theorem for the class of operators treated in [21] appears). We emphasize one of the
purposes of this paper is to obtain, via simple transform techniques, results hitherto
obtainable by independent methods, and show how to use them to conjecture new
ones as well as prove very general results similar to those in [16]. The starting point
is the Bethe sum rule [10] as it appears in [43]:

∑
k

��k − �j��ajk����2 = ���2� (3.3)

where

ajk��� =
∫
�
ukuje

ix·�dx� (3.4)

and � ∈ �d.
The Bethe sum rule provides an elementary proof of a lemma of Laptev [39]:

Theorem 3.2 (Laptev [39]).

∑
j

�z− �j�+ ≥ Lcl
1�d ũ

−2
1 �z− �1�

1+d/2
+ � (3.5)

where ũ1 = ess sup�u1� and Lcl
1�d is given in (1.6).

Remarks. Laptev’s form of the inequality reads

∑
j

�z− �j�+ ≥ 1

1+ d
2

Lcl
0�d ũ

−2
1 �z− �1�

1+d/2
+ � (3.6)

which is equivalent by dint of (1.13).

Proof. In (3.3), choose j = 1, to get

∑
k

��k − �1��a1k����2 = ���2�

Let z > �1. One can always find an integer N such that

�N < z ≤ �N+1�

allowing the sum to be split as
∑

k =
∑N

k=1 +
∑�

k=N+1. We can replace each term in∑�
k=N+1 �� � � � by

�z− �1��a1k����2�
Hence

N∑
k=1

��k − �1��a1k����2 + �z− �1�

(
1−

N∑
k=1

�a1k����2
)
≤ ���2� (3.7)
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1534 Harrell and Hermi

Here we have exploited the completeness of the orthonormal family �uk�
�
k=1, noting

that

�∑
k=1

�a1k����2 =
∫
�
�u1e

ix·��2 = 1�

Therefore

�∑
k=N+1

�a1k����2 = 1−
N∑
k=1

�a1k����2�

These identities reduce (3.7) to

�z− �1�+ ≤ ���2 +∑
k

�z− �k�+�a1k����2� (3.8)

(The statement is true by default for z ≤ �1.) One then integrates over a ball Br ⊂ �d

of radius r. To simplify the notation we use

�Br � = volume of Br = Cd r
d�

and

I2�Br� =
∫
Br

���2d� = d

d + 2
Cd r

d+2�

Inequality (3.8) reduces to

�z− �1�+ ≤ I2�Br�

�Br �
+∑

k

�z− �k�+

∫
Br
�a1k����2d�
�Br �

� (3.9)

By the Plancherel–Parseval identity,

1
�2
�d

∫
Br

�a1k����2d� ≤
∫
�
�u1�2�uk�2dx (3.10)

≤ ess sup�u1�2
∫
�
�uk�x��2dx

= ess sup�u1�2� (3.11)

Incorporating (3.11) into (3.9) and simplifying the expression leads to

∑
k

�z− �k�+ ≥ ũ−2
1 Lcl

0�d r
d

[
�z− �1�+ − d

d + 2
r2
]
� (3.12)

Optimizing over r results in the statement of the theorem. �

As an immediate consequence of Theorem 3.2 and Riesz iteration, we have the
following.
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Riesz Means of Eigenvalues 1535

Corollary 3.3. For 	 ≥ 1

∑
k

�z− �k�
	
+ ≥ Lcl

	�d ũ
−2
1 �z− �1�

	+d/2
+ � (3.13)

We also have the following universal lower bound.

Corollary 3.4.

∑
k

�z− �k�+ ≥ 2
d + 2

H−1
d �

−d/2
1 �z− �1�

1+d/2
+ � (3.14)

Proof. This corollary is evident using the isoperimetric inequality of Chiti [13, 30],

ess sup�u1� ≤
(
�1



)d/4 21−d/2

��d/2�1/2jd/2−1�1Jd/2�jd/2−1�1�
� (3.15)

With the way Hd and Lcl
0�d are defined in (3.2) and (1.6), we prefer to put this

inequality in the form

ũ2
1 ≤ HdL

cl
0�d�1

d/2� (3.16)

Substituting (3.16) into (3.6) leads to (3.14). �

As a corollary, we have the following lower bound for Z�t�.

Corollary 3.5. For t ≥ 0

Z�t� ≥ ��1+ d/2�
Hd

e−�1t

��1 t�
d/2

� (3.17)

Proof. We reason as in the derivation of Kac’s ineq. (1.19) from Berezin–Li–Yau
(1.9). Apply the Laplace transform to (3.1) to obtain

��1+ 	�

t1+	
Z�t� ≥ H−1

d �
−d/2
1

��1+ 	���1+ d/2�
��1+ 	+ d/2�

��1+ 	+ d/2�
t1+	+d/2

e−�1t�

Simplifying results in the statement of the corollary. �

An immediate consequence of this corollary is the following universal lower
bound for the zeta function in terms of the fundamental eigenvalue.

Corollary 3.6. For 	 > d/2

�spec�	� ≥
��1+ d/2�

Hd

��	− d/2�
��	�

1
�
	
1

� (3.18)

Proof. This corollary is evident by applying the Mellin transform

�spec�	� =
1

��	�

∫ �

0
t	−1Z�t�dt
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1536 Harrell and Hermi

Figure 2. Universal lower bound estimate for �	1 �spec�	� from (3.18) as a function of 	, for
d = 8. (Color figure available online.)

to the statement (3.17) and observing that the definition of the � function leads to

1
�	

= 1
��	�

∫ �

0
e−�tt	−1dt�

�

We also note that it is not hard to prove that there exists a threshold value
	0 > d/2 beyond which the estimate in (3.18) becomes weak (in comparison with
the natural bound obtained by dropping all the terms in the definition of �spec�	�
except for 1/�	1). This is illustrated in Figure 2.

Inequality (3.17) lends itself to a generalization in the spirit of Dolbeault et al.
[16]. We first adopt its setting. For a nonnegative function f on �+ such that

∫ �

0
f�t��1+ t−d/2�

dt

t
< �

define

F�s� 
=
∫ �

0
e−stf�t�

dt

t
(3.19)

and let

G�s� 
= �d/2�F�z���s�� (3.20)

where

���F�z���s� 
=
1

����

∫ �

s
F�z��z− s��−1dz
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Riesz Means of Eigenvalues 1537

denotes the Weyl transform of order � of the function F�z�. From the tables in [19],
one notes that

G�s� =
∫ �

0

e−st

td/2
f�t�

dt

t
�

In fact, in analogy to what is shown in [16], (3.18) is a particular case of the
following.

Corollary 3.7. For F�s� and G�s� as defined above,

�∑
j=1

F��j� ≥
��1+ d/2�

Hd

�
−d/2
1 G��1�� (3.21)

The proof of (3.21) is immediate: scale (3.17) by f�t�/t then integrate from 0
to �. The counterpart to this inequality for Schrödinger operators has already been
treated in [16].

Remarks.

(i) When F�s� = s−	, G�s� = ��	− d
2 �

��	�
sd/2−	. Thus (3.18) is a particular case of (3.21).

(ii) The choice f�t� = a ��t − a�, for a > 0, leads to F�s� = e−as and G�s� =
e−as/ad/2. One can then perceive that (3.17) is a particular case of (3.21) as well.
Thus (3.17) and (3.21) are equivalent.

4. Remarks on the Work of Melas and Some Conjectures

In [45] Melas proved the following inequality.

k∑
i=1

�i ≥
d

d + 2
4
2k1+2/d

�Cd����2/d +Md

���
I���

k� (4.1)

Here I��� is the “second moment” of �, while Md is a constant that depends on the
dimension d. Melas introduced the inequality as a correction to the Berezin–Li–Yau
inequality (1.10).

Applying the Legendre transform ��f��w� 
= supz�wz− f�z�� (see [25, 33, 41,
42]) to (4.1), one immediately obtains

R	�z� ≤ Lcl
	�d���

(
z−Md

���
I���

)	+ d
2

+
� (4.2)

for 	 ≥ 1. Applying the Laplace transform to (4.2) leads to the following correction
of Kac’s inequality

�∑
i=1

e−�it ≤ ���
�4
t�d/2

e−Md
���
I���

t� (4.3)
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1538 Harrell and Hermi

Finally, applying the Mellin transform to (4.3) leads to the following

�spec�	� ≤
1

�4
�d/2
��	− d/2�

��	�
���

(
Md

���
I���

) d
2 −	

� (4.4)

Furthermore, reasoning as in Section 3, these inequalities are particular cases of the
following general theorem.

Theorem 4.1. For F�s� and G�s� as defined by (3.19) and (3.20), one has

�∑
j=1

F��j� ≤
1

�4
�d/2
���G

(
Md

���
I���

)
� (4.5)

We conjecture that a further improvement is possible, viz.,

�∑
j=1

F��j� ≤
1

�4
�d/2
���G����−2/d� (4.6)

for the eigenvalues of the Dirichlet Laplacian, and that this is sharp. In this case,
1

���2/d in (4.6) replaces Md
���
I���

in (4.5).
Buttressing this conjecture is a related one for the spectral zeta function of the

Dirichlet Laplacian:

Conjecture 4.2. For 	 > d/2,

�spec�	� ≤
��	− d/2�

��	�

���2	/d
�4
�d/2

� (4.7)

The conjectured universal constant

C��� = 1
�4
�d/2

��	− d/2�
��	�

appearing in this inequality is exactly that of the corresponding Schrödinger case
in [16]. Statements (4.6) and (4.7) would be immediate consequences, using integral
transforms, of the following conjectured improvement to the Kac’s inequality:

�∑
i=1

e−�it ≤ ���
�4
t�d/2

e
− t

���2/d � (4.8)

We point out that Conjecture 4.2 is consistent with the Rayleigh–Faber–Krahn
inequality

�1 ≥
C

2/d
d j2d/2−1�1

���2/d

(as when one combines (3.18) and (4.7)). Furthermore, as a result of (1.10),

�k ≥
d

d + 2
4
2k2/d

�Cd����2/d �
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Riesz Means of Eigenvalues 1539

and therefore

�spec�	� ≤
(
d + 2
d

)	
��2	/d�
�4
2�	

�Cd ����2	/d� (4.9)

If, as in the case of tiling domains, the Pólya conjecture [46]

�k ≥
4
2k2/d

�Cd����2/d �

is true, then

�spec�	� ≤
��2	/d�
�4
2�	

�Cd ����2	/d� (4.10)

In both expressions above � denotes the usual expression for the Euler zeta
function, i.e.,

��	� =
�∑
k=1

1
k	

�

The bounds resulting from (4.7), (4.9), and (4.10), for ���−2	/d �spec�	� are
plotted in Figure 3. It is clear that there is a threshold value 	0 beyond which the
conjectured bound (4.7) cannot improve on Berezin–Li–Yau (4.9). We expect that it
should be possible to prove

��2	/d�
�4
2�	

C
2	/d
d ≤ 1

�4
�d
��	− d/2�

��	�
≤

(
d + 2
d

)	
��2	/d�
�4
2�	

C
2	/d
d �

Already Fig. 3 gives credence to this statement and Conjecture 4.2.

Figure 3. Upper bound estimate for ���−2	/d �spec�	� from (4.7), (4.9), and (4.10), as a
function of 	, for d = 2. (Color figure available online.)
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